Paper “Scalable High Efficiency Video Coding based HTTP Adaptive Streaming over QUIC Using Retransmission” hs been accepted at EPIQ 2020

,

Authors: Minh Nguyen, Hadi Amirpour, Christian Timmerer, Hermann Hellwagner (Alpen-Adria-Universität Klagenfurt)

Abstract: HTTP/2 has been explored widely for video streaming, but still suffers from Head-of-Line blocking, and three-way hand-shake delay due to TCP. Meanwhile, QUIC running on top of UDP can tackle these issues. In addition, although many adaptive bitrate (ABR) algorithms have been proposed for scalable and non-scalable video streaming, the literature lacks an algorithm designed for both types of video streaming approaches. In this paper, we investigate the impact of quick and HTTP/2 on the performance of adaptive bitrate(ABR) algorithms in terms of different metrics. Moreover, we propose an efficient approach for utilizing scalable video coding formats for adaptive video streaming that combines a traditional video streaming approach (based on non-scalable video coding formats) and a retransmission technique. The experimental results show that QUIC benefits significantly from our proposed method in the context of packet loss and retransmission.

Compared to HTTP/2, it improves the average video quality and also provides a smoother adaptation behavior. Finally, we demonstrate that our proposed method originally designed for non-scalable video codecs also works efficiently for scalable videos such as Scalable High EfficiencyVideo Coding (SHVC).

Keywords: QUIC, H2BR, HTTP adaptive streaming, Retransmission, SHVC

Conference: ACM SIGCOMM 2020 Workshop on Evolution, Performance, and Interoperability of QUIC (EPIQ 2020), August 10-14, 2020, Newyork City, USA.

Link: https://conferences.sigcomm.org/sigcomm/2020/workshop-epiq.html

ARTICONF’s paper, “Decentralized Social Media Applications as a Service: a Car-Sharing Perspective” accepted for publication at IEEE workshop on blockchain theory and applications (BRAIN 2020) in conjunction with ISCC 2020

,

Authors: Anandhakumar Palanisamy, Mirsat Sefidanoski, Spiros Koulouzis, Carlos Rubia, Nishant Saurabh and Radu Prodan

Abstract: Social media applications are essential for next generation connectivity. Today, social media are centralized platforms with a single proprietary organization controlling the network and posing critical trust and governance issues over the created and propagated content. The ARTICONF project funded by the European Union’s Horizon 2020 program researches a decentralized social media platform based on a novel set of trustworthy, resilient and globally sustainable tools to fulfil the privacy, robustness and autonomy-related promises that proprietary social media platforms have failed to deliver so far. This paper presents the ARTICONF approach to a car-sharing use case application, as a new collaborative peer-to-peer model providing an alternative solution to private car ownership. We describe a prototype implementation of the car-sharing social media application and illustrate through real snapshots how the different ARTICONF tools support it in a simulated scenario.

Link: https://sites.google.com/view/brain-2020/

Natalia Sokolova

Paper “Pixel-Based Iris and Pupil Segmentation in Cataract Surgery Videos Using Mask R-CNN” was accepted at the workshop of the International Symposium on Biomedical Imaging

,

Authors: Natalia Sokolova, Mario Taschwer, Stephanie Sarny, Doris Putzgruber-Adamitsch and Klaus Schoeffmann

Abstract: Automatically detecting clinically relevant events in surgery video recordings is becoming increasingly important for documentary, educational, and scientific purposes in the medical domain. From a medical image analysis perspective, such events need to be treated individually and associated with specific visible objects or regions. In the field of cataract surgery (lens replacement in the human eye), pupil reaction (dilation or restriction) during surgery may lead to complications and hence represents a clinically relevant event. Its detection requires automatic segmentation and measurement of pupil and iris in recorded video frames. In this work, we contribute to research on pupil and iris segmentation methods by (1) providing a dataset of 82 annotated images for training and evaluating suitable machine learning algorithms, and (2) applying the Mask R-CNN algorithm to this problem, which – in contrast to existing techniques for pupil segmentation – predicts free-form pixel-accurate segmentation masks for iris and pupil.

The proposed approach achieves consistent high segmentation accuracies on several metrics while delivering an acceptable prediction efficiency, establishing a promising basis for further segmentation and event detection approaches on eye surgery videos.

Link: http://2020.biomedicalimaging.org/

Hadi Amirpour awarded the Best Engagement Award at ACM MMSys 2020

This year’s ACM MMSys was held as a fully virtual/online event and Slido was used for asking questions about keynotes and presentations including offline discussions with presenters. The interaction report provides some interesting key insights including the word cloud below which provides an overview of this year’s discussion items. Although ACM MMSys 2020 is over, everyone is welcome joining the MMSys Slack workspace where the discussion will continue until ACM MMSys 2021 (available soon!) and hopefully beyond.

Roland Matha

Excellence badge for Roland Mathá et al. recently published IEEE TPDS paper

, , ,

The IEEE Transactions on Parallel and Distributed Systems (TPDS) paper “Simplified Workflow Simulation on Clouds based on Computation and Communication Noisiness”, published by Roland Mathá and Prof. Radu Prodan et al. got awarded the Code Reviewed Reproducibility EXCELLENCE Badge.

Christian Timmerer

Christian Doppler Lab ATHENA papers wins best paper award at QoMEX 2020

,

Title: Objective and Subjective QoE Evaluation for Adaptive Point Cloud Streaming

Authors: Jeroen van der Hooft (Ghent University), Maria Torres Vega (Ghent University), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Bitmovin), Ali C. Begen (Ozyegin University, Networked Media), Filip De Turck (Ghent University), Raimund Schatz (Alpen-Adria Universität Klagenfurt & AIT Austrian Institute of Technology, Austria)

Abstract: Volumetric media has the potential to provide the six degrees of freedom (6DoF) required by truly immersive media. However, achieving 6DoF requires ultra-high bandwidth transmissions, which real-world wide area networks cannot provide economically. Therefore, recent efforts have started to target efficient delivery of volumetric media, using a combination of compression and adaptive streaming techniques. It remains, however, unclear how the effects of such techniques on the user perceived quality can be accurately evaluated. In this paper, we present the results of an extensive objective and subjective quality of experience (QoE) evaluation of volumetric 6DoF streaming. We use PCC-DASH, a standards-compliant means for HTTP adaptive streaming of scenes comprising multiple dynamic point cloud objects. By means of a thorough analysis we investigate the perceived quality impact of the available bandwidth, rate adaptation algorithm, viewport prediction strategy and user’s motion within the scene. We determine which of these aspects has more impact on the user’s QoE, and to what extent subjective and objective assessments are aligned.

Keywords: Volumetric Media; HTTP Adaptive Streaming; 6DoF; MPEG V-PCC; QoE Assessment; Objective Metrics

International Conference on Quality of Multimedia Experience (QoMEX)
May 26-28, 2020, Athlone, Ireland
http://qomex2020.ie/

Christian Timmerer

Christian Timmerer elected as QoMEX Steering Committee Chair

Christian Timmerer and Peter Schelkens have been elected as Chairs of the QoMEX Steering Committee and Sebastian Möller has been elected as Treasurer.

The primary goal of the conference is to bring together leading professionals and scientists in multimedia quality and user experience from around the world. QoMEX is a conference taking place annually in early summer and guided by a steering committee.

The 12th International Conference on Quality of Multimedia Experience will be held from May 26th to 28th, 2020 in Athlone, Ireland (online). QoMEX 2020 will provide a warm welcome to leading experts from academia and industry to present and discuss current and future research on multimedia quality, quality of experience (QoE), and user experience (UX).

PV’20: H2BR: An HTTP/2-based Retransmission Technique to Improve the QoE of Adaptive Video Streaming

,

Authors: Minh Nguyen (Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Alpen-Adria-Universität Klagenfurt / Bitmovin Inc.), Hermann Hellwagner (Alpen-Adria-Universität Klagenfurt)

Abstract: HTTP-based Adaptive Streaming (HAS) plays a key role in over-the-top video streaming. It contributes towards reducing the rebuffering duration of video playout by adapting the video quality to the current network conditions. However, it incurs variations of video quality in a streaming session because of the throughput fluctuation, which impacts the user’s Quality of Experience (QoE). Besides, many adaptive bitrate (ABR) algorithms choose the lowest-quality segments at the beginning of the streaming session to ramp up the playout buffer as soon as possible. Although this strategy decreases the startup time, the users can be annoyed as they have to watch a low-quality video initially. In this paper, we propose an efficient retransmission technique, namely H2BR, to replace low-quality segments being stored in the playout buffer with higher-quality versions by using features of HTTP/2 including (i) stream priority, (ii) server push, and (iii) stream termination. The experimental results show that H2BR helps users avoid watching low video quality during video playback and improves the user’s QoE. H2BR can decrease by up to more than 70% the time when the users suffer the lowest-quality video as well as benefits the QoE by up to 13%.

Keywords: HTTP adaptive streaming, DASH, ABR algorithms, QoE, HTTP/2

Packet Video Workshop 2020 (PV) June 10-11, 2020, Istanbul, Turkey (co-located with ACM MMSys’20)

Link: https://2020.packet.video/

ICME’20: Towards View-aware Adaptive Streaming of Holographic content

,

Authors: Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Bitmovin), and Mohammad Ghanbari (University of Essex)

Abstract: Holography is able to reconstruct a three-dimensional structure of an object by recording full wave fields of light emitted from the object. This requires a huge amount of data to be encoded, stored, transmitted, and decoded for holographic content, making its practical usage challenging especially for bandwidth-constrained networks and memory-limited devices. In the delivery of holographic content via the internet, bandwidth wastage should be avoided to tackle high bandwidth demands of holography streaming. For real-time applications, encoding time-complexity is also a major problem. In this paper, the concept of dynamic adaptive streaming over HTTP (DASH) is extended to holography image streaming and view-aware adaptation techniques are studied. As each area of a hologram contains information of a specific view, instead of encoding and decoding the entire hologram, just the part required to render the selected view is encoded and transmitted via the network based on the users’ interactivity. Four different strategies, namely, monolithic, single view, adaptive view, and non-real time streaming strategies are explained and compared in terms of bandwidth requirements, encoding time-complexity, and bitrate overhead. Experimental results show that the view-aware methods reduce the required bandwidth for holography streaming at the cost of a bitrate increase.

Keywords: Holography, compression, bitrate adaptation, dynamic adaptive streaming over HTTP, DASH.

Philipp Moll

How Players Play Games: Observing the Influences of Game Mechanics

,

Authors: Philipp Moll, Veit Frick, Natascha Rauscher, Mathias Lux (Alpen-Adria-Universität Klagenfurt)
Abstract: The popularity of computer games is remarkably high and is still growing. Despite the popularity and economical impact of games, data-driven research in game design, or to be more precise, in-game mechanics – game elements and rules defining how a game works – is still scarce. As data on user interaction in games is hard to get by, we propose a way to analyze players’ movement and action based on video streams of games. Utilizing this data we formulate four hypotheses focusing on player experience, enjoyment, and interaction patterns, as well as the interrelation thereof. Based on a user study for the popular game Fortnite, we discuss the interrelation between game mechanics, enjoyment of players, and different player skill levels in the observed data.
Keywords: Online Games; Game Mechanics; Game Design; Video Analysis
Links: International Workshop on Immersive Mixed and Virtual Environment Systems (MMVE)