Natalia Sokolova

A 1-page abstract “Pixel-Based Iris and Pupil Segmentation in Cataract Surgery Videos Using Mask R-CNN” was accepted at the workshop of the International Symposium on Biomedical Imaging

,

The 1-page abstract “Pixel-Based Iris and Pupil Segmentation in Cataract Surgery Videos Using Mask R-CNN” was accepted at the workshop “Deep Learning for Biomedical Image Reconstruction” of the International Symposium on Biomedical Imaging that will take place in Iowa-City, Iowa, USA, 3-7 April.

Authors:
Natalia Sokolova, Mario Taschwer, Klaus Schoeffmann

Acknowledment:
This work was funded by the FWF Austrian Science Fund under grant P 31486-N31

ASPIDE: EU first review

, , , ,

The first review of the ASPIDE project took place on 25.02.2020 in the premises of the European Commission in Luxemburg. During the project review, a live demo of the platform for supporting extreme scale applications was presented and future research and developing activities were discussed with the reviewers.

Aspide-Review-2020

Aspide Review 2020

ARTICONF: EU first review

, , , ,

ARTICONF: EU first review

ARTICONF: EU first review

CD-LAB ATHENA Summer School 2020 from July 13-17, 2020

ATHENA Summer School 2020 (July 13-17, 2020)

https://athena.itec.aau.at/summer-school-2020

Please Register now

 

Interview with Radu Prodan at ESMH

, , , ,

The ITEC team participated in HiPeac 2020 and the collocated ASPIDE meeting in Bologna

, , , ,

The ITEC team participated in the HiPeac 2020 International Workshop on Exascale programing models for extreme data with a presentation with title “Monitoring data collection and mining for Exascale systems”. The ITEC team also attended the collocated ASPIDE meeting and actively participated in the decision of the next research activities in the project.

Dragi Kimovski

Dragi Kimovski gave an invited talk at the International Workshop on the Computing Continuum (IWCoCo) 2020 in Bologna

, , , ,

Title of the talk: Mobility-Aware Scheduling of Extreme Data Workflows across the Computing Continuum

Abstract: The appearance of the Fog/Edge computing paradigm, as an emanation of the computing continuum closer to the edge of the network, unravels important opportunities for execution of complex business and scientific workflows near the data sources. The main characteristics of these workflows are (i) their distributed nature, (ii) the vast amount of data (in the order of petabytes) they generate and (iii) the strict latency requirements. Current workflow management approaches rely exclusively on the Cloud Data Centers, which due to their geographical distance in relation to the data sources, could negatively influence the latency and cause violation of workflow requirements. It is therefore essential to research novel concepts for partial offloading of complex workflows closer to where the data is generated, thus reducing the communication latency and the need for frequent data transfers.

In this talk we will explore the  potential  of  the computing continuum  for  scheduling and partial offloading  of  complex  workflows  with  strict  response time requirements and expose the resource provisioning challenges related to the heterogeneity and mobility of the Fog/Edge environment. Consequently, we will discuss a novel mobility-aware Pareto-based approach for task offloading across the continuum, which considers three optimization objectives, namely response time, reliability, and financial cost. Besides, the approach introduces a Markov model to perform a single-step predictive analysis on the mobility of the Fog/Edge devices, thus constraining the task offloading optimization problem to devices that do not frequently move (roam) within the computing continuum. As a conclusion to the talk, we will discuss the efficiency of the presented approach, based on both a simulated and a real-world testbed environment tailored for a set real-world biomedical, meteorological and astronomy workflows.

IWCoCo 2020 in Bologna
Philipp Moll

The Paper “Making simulation results reproducible—Survey, guidelines, and examples based on Gradle and Docker” is published in PeerJ Computer Science

,

The paper “Making simulation results reproducible—Survey, guidelines, and examples based on Gradle and Docker” has been accepted and published in PeerJ Computer Science.

Authors: Wilfried Elmenreich, Philipp Moll, Sebastian Theuermann, Mathias Lux (Alpen-Adria-Universität Klagenfurt)

Abstract: This article addresses two research questions related to reproducibility within the context of research related to computer science. First, a survey on reproducibility addressed to researchers in the academic and private sectors is described and evaluated. The survey indicates a strong need for open and easily accessible results, in particular, reproducing an experiment should not require too much effort. The results of the survey are then used to formulate guidelines for making research results reproducible. In addition, this article explores four approaches based on software tools that could bring forward reproducibility in research results. After a general analysis of tools, three examples are further investigated based on actual research projects which are used to evaluate previously introduced tools. Results indicate that the evaluated tools contribute well to making simulation results reproducible but due to conflicting requirements, none of the presented solutions fulfills all intended goals perfectly.

The full paper can be found on: https://peerj.com/articles/cs-240/