Prof. Radu Prodan

ITEC@AAU coordinates the project Kärntner Fog

, , , ,

The project “Kärntner Fog: A 5G-Enabled Fog Infrastructure for Automated Operation of Carinthia’s 5G Playground Application Use Cases” proposes a new infrastructure automation use case in the 5G Playground Carinthia (5GPG). Kärntner Fog plans to create and deploy a
distributed service middleware infrastructure over a diverse set of novel heterogeneous 5G edge devices, complemented by a high-performance Cloud data center accessible with low latency according to 5G standards. Such an infrastructure is currently missing in the 5GPG and will represent a horizontal backbone that interconnects and integrates the application use cases. Kärtner Fog will automate the development and operation of the applications use cases in the 5GPG in an integrated and more cost-effective fashion to enable more science and innovation within a limited budget.

Involved Organisations: BABEG, ITEC@AAU, ONDA TLC GmbH, FFG/KWF

Coordinator: Prof. Radu Prodan
Project Start: 01.01.2021
Project Duration: 48 months

Prof. Radu Prodan

Paper accepted in IEEE UCC

, , ,

IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC) accepted the paper “Dynamic Multi-objective Scheduling of Microservices in the Cloud”.

Authors: Hamid Mohammadi Fard, Radu Prodan, Felix Wolf

Abstract: For many applications, a microservices architecture promises better performance and flexibility compared to a conventional monolithic architecture. In spite of the advantages of a microservices architecture, deploying microservices poses various challenges for service developers and providers alike. One of these challenges is the efficient placement of microservices on the cluster nodes. Improper allocation of microservices can quickly waste resource capacities and cause low system throughput. In the last few years, new technologies in orchestration frameworks, such as the possibility of multiple schedulers for pods in Kubernetes, have improved scheduling solutions of microservices but using these technologies needs to involve both the service developer and the service provider in the behavior analysis of workloads. Using memory and CPU requests specified in the service manifest, we propose a general microservices scheduling mechanism that can operate efficiently in private clusters or enterprise clouds. We model the scheduling problem as a complex variant of the knapsack problem and solve it using a multi-objective optimization approach. Our experiments show that the proposed mechanism is highly scalable and simultaneously increases utilization of both memory and CPU, which in turn leads to better throughput when compared to the state-of-the-art.

Paper accepted: Energy Consumption Analysis of R-based Machine Learning Algorithms for Pandemic Predictions

,

Authors: Shajulin Benedict (IIIT Kottayam, India), Prateek Agrawal (University of Klagenfurt, Austria & Lovely Professional University, India) , Radu Prodan (University of Klagenfurt, Austria)

Abstract: The push for agile pandemic analytic solutions has rapidly attained development-stage software modules instead of functioning as full-fledged production-stage products — i.e., performance, scalability, and energy-related concerns need to be optimized for the underlying computing domains. And while the research continues to support the idea that reducing the energy consumption of algorithms improves the lifetime of battery-operated machines, advisable tools in almost any developer setting, an energy analysis report for R-based analytic programs is indeed a valuable suggestion. This article proposes an energy analysis framework for R-programs that enables data analytic developers, including pandemic-related application developers, to analyze code. It reveals an energy analysis report for R programs written to predict the new cases of 215 countries using random forest variants. Experiments were carried out at the IoT cloud research lab and the energy efficiency aspects were discussed in the article. In the experiments, ranger-based prediction program consumed 95.8 Joules.

4th International Conference on Advanced Informatics for Computing Research (ICAICR-2020) 

Link: http://informaticsindia.co.in/

Acknowledgement: This work is supported by IIIT-Kottayam faculty research fund and OEAD-DST fund.

Prof. Radu Prodan

Project ADAPT: newspaper article in “Kleine Zeitung”

, , , ,

The newspaper “Kleine Zeitung” published the article “Medizinische Schutzausrüstung: Neue IT-Lösung soll Menschenleben retten” with Prof. Radu Prodan.

 

Paper accepted in the 10th IEEE Conference on Big Data and Cloud Computing: “Cloud — Edge Offloading Model for Vehicular Traffic Analysis”

, , , ,

Authors: Dragi Kimovski, Dijana C. Bogatinoska, Narges Mehran, Aleksandar Karadimce, Natasha Paunkoska, Radu Prodan, Ninoslav Marina

Abstract: The proliferation of smart sensing and computing devices, capable of collecting a vast amount of data, has made the gathering of the necessary vehicular traffic data relatively easy. However, the analysis of these big data sets requires computational resources, which are currently provided by the Cloud Data Centers. Nevertheless, the Cloud Data Centers can have unacceptably high latency for vehicular analysis applications with strict time requirements. The recent introduction of the Edge computing paradigm, as an extension of the Cloud services, has partially moved the processing of big data closer to the data sources, thus addressing this issue. Unfortunately, this unlocked multiple challenges related to resources management. Therefore, we present a model for scheduling of vehicular traffic analysis applications with partial task offloading across the Cloud — Edge continuum. The approach represents the traffic applications as a set of interconnected tasks composed into a workflow that can be partially offloaded to the Edge. We evaluated the approach through a simulated Cloud — Edge environment that considers two representative vehicular traffic applications with a focus on video stream analysis. Our results show that the presented approach reduces the application response time up to eight times while improving energy efficiency by a factor of four.

Prof. Radu Prodan

FFG project “ADaptive and Autonomous data Performance connectivity and decentralized Transport decision-making Network” (ADAPT) accepted

, , , ,

This project started during the most critical phase of the COVID-19 outbreak in Europe where the demand for Personal Protective Equipment (PPE) from each country’s health care system has
surpassed national stock amounts by far. Therefore, the ADAPT consortia agreed to bundle its joint resources to develop and adaptive and autonomous decision-making network to support the involved stakeholders along the PPE Supply Chain in their endeavour to save and protect human lives as quickly as possible.

The partners will do that by providing a Blockchain solution capable of optimizing supply, demand and transport capacities between them, elaborating a technical solution for transparent and realtime certification checks on equipment and production documentation as well as distributed and parallel decision-making capabilities on all levels of this multi-dimensional research problem.

In total, the world community will spent more than € 49,6 billion on PPE medical equipment in 2020, € 7,7 billion thereof could be saved with the transport optimization of ADAPT and additional € 5,18 billion could be freed up in the financing and banking sector which could be reinvested immediately into the expansion of the world’s national health care systems.

ADAPT is a 36-month duration project submitted to 6th Call for Austrian-Chinese Coop. RTD Projects FFG & CAS.

Partners:

  • Alpen-Adria Universität Klagenfurt, Institute of Information Technology (UNI-KLU)
  • Johannes-Kepler-Universität Linz, Intelligent Transport Systems-Sustainable Transport Logistics 4.0. (JKU)
  • Logoplan – Logistik, Verkehrs und Umweltschutz Consulting GmbH (LP)
  • Intact GmbH (INTACT)
  • Chinese Academy of Sciences, Institute of Computing Technology (ICTCAS)
Prof. Radu Prodan

Paper accepted in IEEE Internet Computing: “Inter-host Orchestration Platform Architecture for Ultra-scale Cloud Applications”

, , ,

The manuscript “Inter-host Orchestration Platform Architecture for Ultra-scale Cloud Applications” has been accepted for publication in an upcoming issue of IEEE Internet Computing.

Authors: Sasko Ristov, Thomas Fahringer, Radu Prodan, Magdalena Kostoska, Marjan Gusev, Shahram Dustdar

Abstract: Cloud data centers exploit many memory page management techniques that reduce the total memory utilization and access time. Mainly these techniques are applied to a hypervisor in a single host (intra-hypervisor) without the possibility to exploit the knowledge obtained by a group of hosts (clusters). We introduce a novel inter-hypervisor orchestration platform to provide intelligent memory page management for horizontal scaling. It will use the performance behavior of faster virtual machines to activate pre-fetching mechanisms that reduce the number of page faults. The overall platform consists of five modules – profiler, collector, classifier, predictor, and pre-fetcher. We developed and deployed a prototype of the platform, which comprises the first three modules. The evaluation shows that data collection is feasible in real-time, which means that if our approach is used on top of the existing memory page management techniques, it can significantly lower the miss rate that initiates page faults.

Paper accepted MMM’21: Towards Optimal Multirate Encoding for HTTP Adaptive Streaming

, ,

Authors: Hadi Amirpour (Alpen-Adria-Universität Klagenfurt),Ekrem Çetinkaya (Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Bitmovin), and Mohammad Ghanbari (School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK)

Abstract: HTTP Adaptive Streaming (HAS) enables high quality stream-ing of video contents. In HAS, videos are divided into short intervalscalled segments, and each segment is encoded at various quality/bitratesto adapt to the available bandwidth. Multiple encodings of the same con-tent imposes high cost for video content providers. To reduce the time-complexity of encoding multiple representations, state-of-the-art methods typically encode the highest quality representation first and reusethe information gathered during its encoding to accelerate the encodingof the remaining representations. As encoding the highest quality rep-resentation requires the highest time-complexity compared to the lowerquality representations, it would be a bottleneck in parallel encoding scenarios and the overall time-complexity will be limited to the time-complexity of the highest quality representation. In this paper and toaddress this problem, we consider all representations from the highestto the lowest quality representation as a potential, single reference toaccelerate the encoding of the other, dependent representations. We for-mulate a set of encoding modes and assess their performance in terms ofBD-Rate and time-complexity, using both VMAF and PSNR as objec-tive metrics. Experimental results show that encoding a middle qualityrepresentation as a reference, can significantly reduce the maximum en-coding complexity and hence it is an efficient way of encoding multiplerepresentations in parallel. Based on this fact, a fast multirate encodingmethod is proposed which utilizes depth and prediction mode of a middle quality representation to accelerate the encoding of the dependentrepresentations.

The International MultiMedia Modeling Conference (MMM)

25-27 January 2021, Prague, Czech Republic

Link: https://mmm2021.cz

Keywords: HEVC, Video Encoding , Multirate Encoding , DASH

ICPR 2020: Relevance Detection in Cataract Surgery Videos by Spatio-Temporal Action Localization

,

Authors: Negin Ghamsarian (Alpen-Adria-Universität Klagenfurt), Mario Taschwer (Alpen-Adria-Universität Klagenfurt), Doris Putzgruber-Adamitsch (Klinikum Klagenfurt), Stephanie Sarny (Klinikum Klagenfurt), Klaus Schoeffmann (Alpen-Adria-Universität Klagenfurt)

Abstract: In cataract surgery, the operation is performed with the help of a microscope. Since the microscope enables watching real-time surgery by up to two people only, a major part of surgical training is conducted using the recorded videos. To optimize the training procedure with the video content, the surgeons require an automatic relevance detection approach. In addition to relevance-based retrieval, these results can be further used for skill assessment and irregularity detection in cataract surgery videos. In this paper, a three-module framework is proposed to detect and classify the relevant phase segments in cataract videos. Taking advantage of an idle frame recognition network, the video is divided into idle and action segments. To boost the performance in relevance detection Mask R-CNN is utilized to detect the cornea in each frame where the relevant surgical actions are conducted. The spatio-temporal localized segments containing higher-resolution information about the pupil texture and actions, and complementary temporal information from the same phase are fed into the relevance detection module. This module consists of four parallel recurrent CNNs being responsible to detect four relevant phases that have been defined with medical experts. The results will then be integrated to classify the action phases as irrelevant or one of four relevant phases. Experimental results reveal that the proposed approach outperforms static CNNs and different configurations of feature-based and end-to-end recurrent networks.

25th International Conference on Pattern Recognition, Milan, Italy

Link: https://www.micc.unifi.it/icpr2020/

Is it getting too FOGGY?

, , ,

The FOG just moved from the Lake Wörthersee to ITEC ;)! Lead researchers Dragi Kimovski, and Narges Mehran from Radu Prodan’s Lab and Josef Hammer from Hermann Hellwagner’s Lab setup UNI-KLU’s first FOG infrastructure with 40 computing nodes including 5 GPU-enabled ones.

Why should Cloud have all the FUN xD?