The manuscript “Multi-objective scheduling of extreme data scientific workflows in Fog” has been accepted for publication in the “Future Generation Computer Systems” journal published by Elsevier. The journal is ranked in the Q1 (SJR) in the areas of “Hardware and Architectures” and “Computer Networks and Communications” with an Impact Factor of 5.768 (Journal Citations Reports). The manuscript was prepared in collaboration with the Technical University of Vienna.
Authors: Vincenzo De Maio and Dragi Kimovski
Abstract: The concept of “extreme data” is a recent re-incarnation of the “big data” problem, which is distinguished by the massive amounts of information that must be analyzed with strict time requirements. In the past decade, the Cloud data centers have been envisioned as the essential computing architectures for enabling extreme data workflows. However, the Cloud data centers are often geographically distributed. Such geographical distribution increases offloading latency, making it unsuitable for processing of workflows with strict latency requirements, as the data transfer times could be very high. Fog computing emerged as a promising solution to this issue, as it allows partial workflow processing in lower-network layers. Performing data processing on the Fog significantly reduces data transfer latency, allowing to meet the workflows’ strict latency requirements. However, the Fog layer is highly heterogeneous and loosely connected, which affects reliability and response time of task offloading. In this work, we investigate the potential of Fog for scheduling of extreme data workflows with strict response time requirements. Moreover, we propose a novel Pareto-based approach for task offloading in Fog, called Multi-objective Workflow Offloading (MOWO). MOWO considers three optimization objectives, namely response time, reliability, and financial cost. We evaluate MOWO workflow scheduler on a set of real-world biomedical, meteorological and astronomy workflows representing examples of extreme data application with strict latency requirements.
Acknowledgments: ASPIDE H2020 and ATOMICFOG ÖAD AT/MK 2018