Multimedia Communication

Christian Timmerer

5GPlayground-Eröffnung mit ITEC-Use-Case “Virtual Realities”

,

Mit dem 5G Summit Carinthia, ein Kurzsymposium zur neuen Mobilfunktechnologie 5G, wurde heute der 5G Playground Carinthia feierlich eröffnet. Der 5G Playground Carinthia ist österreichweit die erste Serviceeinrichtung für die Erforschung und Weiterentwicklung von 5G-spezifischen Anwendungen, Services und Geschäftsmodellen. Das Bundesministerium für Verkehr, Innovation und Technology (BMVIT) sowie das Land Kärnten finanzieren dieses einzigartige Forschungslabor im Süden Österreichs. A1 Telekom Austria stellt die technische Infrastruktur zur Verfügung.

Der 5G Playground Carinthia bietet allen Forschungs-, Innovations- und Bildungseinrichtungen sowie KMUs und Start Ups die einzigartige Möglichkeit ihre Produkte und Anwendungen mit dieser neuen Technologie zu testen und im Echtbetrieb zu erproben.

Die Alpen-Adria-Universität Klagenfurt und insbesondere das Institut für Informationstechnologie beteiligt sich an dem 5GPlayground mit einen Use-Case über “Virtual Realities”. Das Projekt erforscht, entwickelt, erprobt und evaluiert ausgewählte VR-Anwendungen über 5G-Netze, z.B. Streaming von 360°-Videos und von neuen Formen immersiver Medien, etwa von volumetrischen Daten (Point Clouds). Diese Anwendungen erfordern und testen sowohl die hohen Datenraten als auch die extrem geringen Verzögerungszeiten von 5G-Netzen, im Downlink (Streaming zu einer VR-Brille) wie auch im Uplink (Streaming von Live-Inhalten von einer 360°-Kamera weg). Darüber hinaus werden Edge-Computing-Komponenten genutzt, die 5G vorsieht, um höhere Präsentationsqualität und raschere Reaktionszeiten des VR-Systems bei Bewegung/Interaktion eines Nutzers zu erreichen. Es werden VR-Systeme entwickelt, welche die Leistungsfähigkeit von 5G zu demonstrieren erlauben.

Link: https://5gplayground.at/

Philipp Moll

Talk of Philipp Moll on the ACM ICN 2019 conference

, ,

Philipp Moll presented the paper “Inter-Server Game State Synchronization using Named Data Networking” on the ACM Conference on Information-Centric Networking 2019 in Macau, China.

Authors: Philipp Moll, Sebastian Theuermann, Natascha Rauscher, Hermann Hellwagner (Alpen-Adria-Universität Klagenfurt), Jeff Burke (UCLA)

Abstract: In this paper, we develop a system for inter-server game state synchronization using the NDN architecture. We use Minecraft as a real-world example of online games and extend Minecraft’s single-server architecture to work as multi-server game. In our prototype,we use two different NDN-based approaches for the dissemination of game state updates in server clusters. In a naive approach, servers request game state updates for small segments of the game worldfrom other servers of the cluster. In an improved approach – the region manifest approach– servers identify changed parts of the world by subscribing to manifest files containing information about world regions managed by the other servers of the cluster. An apparent downside of the NDN approaches is the high overhead when handling small-sized game state updates, but our evaluation shows that NDN already improves on IP-based implementations regarding the resulting traffic volume when three or more servers are involved. Furthermore, caused by NDN’s inherent multicast functionality, the advantage over IP increases with the size of theserver cluster. Moreover, the use of NDN-based approaches leads to benefits beyond traffic reduction only. The name-based host-independent access to world regions allows to scale server clusters easier.

The paper full paper can be found on: https://conferences.sigcomm.org/acm-icn/2019/proceedings/icn19-25.pdf

Christian Timmerer

Christian Timmerer is TPC co-chair of ACM MMSys 2020

,

The ACM Multimedia Systems Conference (MMSys) is held June 8-11, 2020 in Istanbul, Turkey and provides a forum for researchers to present and share their latest research findings in multimedia systems. While research about specific aspects of multimedia systems are regularly published in the various proceedings and transactions of the networking, operating systems, real-time systems, databases, mobile computing, distributed systems, computer vision, and middleware communities, MMSys aims to cut across these domains in the context of multimedia data types. This provides a unique opportunity to investigate the intersections and the interplay of the various approaches and solutions developed across these domains to deal with multimedia data types.

General Chairs
— Ali C. Begen (Ozyegin University and Networked Media, Turkey)
— Laura Toni (University College London, UK)

TPC Chairs
— Özgü Alay (Simula Metropolitan and University of Oslo, Norway)
— Christian Timmerer (Alpen-Adria-Universität Klagenfurt and Bitmovin, Austria)

Link: ACM MMSYS 2020

ACMMM’19-Demo-Paper: Docker-Based Evaluation Framework for Video Streaming QoE in Broadband Networks

,

Abstract: Video streaming is one of the top traffic contributors in the Internet and a frequent research subject. It is expected that streaming traffic will grow 4-fold for video globally and 9-fold for mobile video between 2017 and 2022. In this paper, we present an automatized measurement framework for evaluating video streaming QoE in operational broadband networks, using headless streaming with a Docker-based client, and a server-side implementation allowing for the use of multiple video players and adaptation algorithms. Our framework allows for integration with the MONROE testbed and Bitmovin Analytics, which bring on the possibility to conduct large-scale measurements in different networks, including mobility scenarios, and monitor different parameters in the application, transport, network, and physical layers in real-time.

Authors: Cise Midoglu (Simula), Anatoliy Zabrovskiy (AAU), Özgü Alay (Simula), Daniel Hölbling-Inzko (Bitmovin), Carsten Griwodz (Univ. of Oslo), Christian Timmerer (AAU/Bitmovin)

Keywords: adaptive streaming, network measurements, OTT video analytics, QoE

Link: ACMMM 2019

Christian Timmerer

ACMMM’19: Towards 6DoF HTTP Adaptive Streaming Through Point Cloud Compression

,

Abstract: The increasing popularity of head-mounted devices and 360° video cameras allows content providers to offer virtual reality video streaming over the Internet, using a relevant representation of the immersive content combined with traditional streaming techniques. While this approach allows the user to freely move her head, her location is fixed by the camera’s position within the scene. Recently, an increased interest has been shown for free movement within immersive scenes, referred to as six degrees of freedom. One way to realize this is by capturing objects through a number of cameras positioned in different angles, and creating a point cloud which consists of the location and RGB color of a significant number of points in the three-dimensional space. Although the concept of point clouds has been around for over two decades, it recently received increased attention by ISO/IEC MPEG, issuing a call for proposals for point cloud compression. As a result, dynamic point cloud objects can now be compressed to bit rates in the order of 3 to 55 Mb/s, allowing feasible delivery over today’s mobile networks. In this paper, we propose PCC-DASH, a standards-compliant means for HTTP adaptive streaming of scenes comprising multiple, dynamic point cloud objects. We present a number of rate adaptation heuristics which use information on the user’s position and focus, the available bandwidth, and the client’s buffer status to decide upon the most appropriate quality representation of each object. Through an extensive evaluation, we discuss the advantages and drawbacks of each solution. We argue that the optimal solution depends on the considered scene and camera path, which opens interesting possibilities for future work.

Authors: Jeroen van der Hooft, Tim Wauters, Filip De Turck (Ghent University – imec), Christian Timmerer, and Hermann Hellwagner (Alpen-Adria-Universität Klagenfurt)

Keywords: HTTP adaptive streaming, MPEG-DASH, immersive video, point clouds, MPEG V-PCC, rate adaptation

Link: ACMMM 2019

Philipp Moll

Philipp Moll presented his work “Towards an NDN-based Online Gaming Architecture” as demo on the NDN Community Meeting held at the National Institute of Standards and Technology (NIST)

,

In the course of his research stay at UCLA, Philipp Moll attended the NDN Community Meeting 2019 and presented his work “Towards an NDN-based Online Gaming Architecture”.

Abstract: The popularity of online games increased steadily during the last decades and nowadays games play an important role in the entertainment industry. Although the rising popularity of online games goes hand in hand with increased complexity of technical challenges, the networking stack of online games is built on decades-old technologies, which were never intended to be used in games, and is often responsible for crashing game servers during peak hours. Replacing the currently used connection-oriented networking approach by a content-centric architecture could yield advantages reaching beyond avoiding inefficiencies found in IP-based online games. We propose an NDN-based system for Massive Multiplayer Online Role-Playing Games (MMORPGs) which tackles issues found in IP-based systems.

Authors: Philipp Moll, Sebastian Theuermann, Hermann Hellwagner (Klagenfurt University), Jeff Burke (UCLA)

Links:

Philipp Moll

The paper “Inter-Server Game State Synchronization using Named Data Networking” has been accepted

,

The paper “Inter-Server Game State Synchronization using Named Data Networking” has been accepted for publication at the ACM Conference on Information-Centric Networking 2019 to be held in Macau, China (24-26 September 2019).

Authors: Philipp Moll, Sebastian Theuermann, Natascha Rauscher, Hermann Hellwagner (Alpen-Adria-Universität Klagenfurt), Jeff Burke (UCLA)

Abstract: In this paper, we develop a system for inter-server game state synchronization using the NDN architecture. We use Minecraft as a real-world example of online games and extend Minecraft’s single-server architecture to work as multi-server game. In our prototype, we use two different NDN-based approaches for the dissemination of game state updates in server clusters. In a naive approach, servers request game state updates for small segments of the game world from other servers of the cluster. In an improved approach – the region manifest approach – servers identify changed parts of the world by subscribing to manifest files containing information about world regions managed by the other servers of the cluster. An apparent downside of the NDN approaches is the high overhead when handling small-sized game state updates, but our evaluation shows that NDN already improves on IP-based implementations regarding the resulting traffic volume when three or more servers are involved. Furthermore, caused by NDN’s inherent multicast functionality, the advantage over IP increases with the size of the server cluster. Moreover, the use of NDN-based approaches leads to benefits beyond traffic reduction only. The name-based host-independent access to world regions allows to scale server clusters easier.

Hermann Hellwagner is Lead Guest Editor of the Special Issue “Communication in Networks of Unmanned Aerial Vehicles (UAVs)” of the open access journal “Sensors”

,

https://www.mdpi.com/journal/sensors/special_issues/communication_networks_UAVs

Christian Timmerer

ACMMM’19 Tutorial: A Journey towards Fully Immersive Media Access

,

Abstract: Universal media access as proposed in the late 90s, early 2000 is now reality. Thus, we can generate, distribute, share, and consume any media content, anywhere, anytime, and with/on any device. A major technical breakthrough was the adaptive streaming over HTTP resulting in the standardization of MPEG-DASH, which is now successfully deployed in HTML5 environments thanks to corresponding media source extensions (MSE). The next big thing in adaptive media streaming is virtual reality applications and, specifically, omnidirectional (360°) media streaming, which is currently built on top of the existing adaptive streaming ecosystems. This tutorial provides a detailed overview of adaptive streaming of both traditional and omnidirectional media within HTML5 environments. The tutorial focuses on the basic principles and paradigms for adaptive streaming – both traditional and omnidirectional media – as well as on already deployed content generation, distribution, and consumption workflows. Additionally, the tutorial provides insights into standards and emerging technologies in the adaptive streaming space. Finally, the tutorial includes the latest approaches for immersive media streaming enabling 6DoF DASH through Point Cloud Compression (PCC) and concludes with open research issues and industry efforts in this domain.

Lecturers: Christian Timmerer, Alpen-Adria-Universität Klagenfurt & Bitmovin, Inc.
Ali C. Begen, Ozyegin University and Networked Media Read more

Christian Timmerer

IEEE JSAC: Multimedia Economics for Future Networks: Theory, Methods, and Applications

,

Authors: Wen Ji, Zhu Li, H. Vincent Poor, Christian Timmerer, and Wenwu Zhu

Abstract: With the growing integration of telecommunication networks, Internet of Things (IoT), and 5G networks, there is a tremendous demand for multimedia services over heterogeneous networks. According to recent survey reports, mobile video traffic accounted for 60 percent of total mobile data traffic in 2016, and it will reach up to 78 percent by the end of 2021. Users’ daily lives are inundated with multimedia services, such as online video streaming (e.g., YouTube and Netflix), social networks (e.g., Facebook, Instagram, and Twitter), IoT and machine generated video (e.g, surveillance cameras), and multimedia service providers (e.g., Over-the-Top (OTT) services). Multimedia data is thus becoming the dominant traffic in the near future for both wired and wireless networks.

W. Ji, Z. Li, H. V. Poor, C. Timmerer and W. Zhu, “Guest Editorial Multimedia Economics for Future Networks: Theory, Methods, and Applications,” in IEEE Journal on Selected Areas in Communications, vol. 37, no. 7, pp. 1473-1477, July 2019.
doi: 10.1109/JSAC.2019.2918962

Linkhttps://doi.org/10.1109/JSAC.2019.2918962