From Wednesday, 24.08.2022, until Sunday, 28.08.2022, players from all over the world played our game “A Webbing Journey” at Gamescom 2022 in Cologne. Our booth was run by Sebastian Uitz, Manuel Santner, and Fabian Schober, and we have been one of the only two Austrian games in the indie area this year. The second one is Gibbon from Broken Rules. The size of the Gamescom is just crazy compared to the Austrian events, with over 250.000 people attending this year. We prepared a new demo level for this event, and the feedback was great, as always. In addition, we made valuable connections to the games industry through other game devs, publishers, and the press.

The futurezone Awards 2022 are looking for the most innovative ideas and projects. Three finalists (each category) have now been selected from the numerous submissions.

ITEC was nominated for two projects: 5G Virtual Realities and GAIA (together with Bitmovin).

The ADAPT workshop took place in Macau, China, on 09 Oct 2022 at the IEEE ITSC conference with more than 50 international attendees! The ADAPT-Team has successfully participated!

 

Bitmovin, a leading provider of video streaming infrastructure, and the University of Klagenfurt announced they will collaborate on a two-year joint research project worth €3.3million to develop a climate-friendly adaptive video streaming platform called ‘GAIA’. The Austrian Research Promotion Agency (FFG) will co-fund the project, providing an initial €460,000 in funding for the first year.

Project ‘GAIA’ aims to identify ways to improve sustainability and reduce energy consumption across the end-to-end video streaming chain by

  • Enabling energy awareness and accountability, including benchmarking and predicting energy consumption and greenhouse gas emissions across the entire delivery chain, from content creation and server-side encoding to video transmission and client-side rendering.
  • Reducing energy consumption and greenhouse gas emissions through advanced analytics and optimizations on all phases of the video delivery chain.

Read more

The project partners reunited at @itecmmc for a final project review. Thank you Horizon2020 @EU_Commission it has been an honour to collaborate for the Future Hyper-connected Sociality.

ARTICONF project review

@UvA_Amsterdam
@mscdigsoc
@UOhrid
@MOGTechnologies
@AgiliaCenter
@vialog_io
@bitYogaAS
@itec

18th International Conference on Network and Service Management (CNSM 2022)

Thessaloniki, Greece | 31 October – 4 November 2022

Conference Website

Minh Nguyen (Alpen-Adria-Universität Klagenfurt, Austria), Babak Taraghi (Alpen-Adria-Universität Klagenfurt, Austria), Abdelhak Bentaleb (National University of Singapore, Singapore), Roger Zimmermann (National University of Singapore, Singapore), and Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Austria)

Abstract: Considering network conditions, video content, and viewer device type/screen resolution to construct a bitrate ladder is necessary to deliver the best Quality of Experience (QoE).
A large-screen device like a TV needs a high bitrate with high resolution to provide good visual quality, whereas a small one like a phone requires a low bitrate with low resolution. In
addition, encoding high-quality levels at the server side while the network is unable to deliver them causes unnecessary cost for the content provider. Recently, the Common Media Client Data (CMCD) standard has been proposed, which defines the data that is collected at the client and sent to the server with its HTTP requests. This data is useful in log analysis, quality of service/experience monitoring and delivery improvements.

cadlad

 

In this paper, we introduce a CMCD-Aware per-Device bitrate LADder construction (CADLAD) that leverages CMCD to address the above issues. CADLAD comprises components at both client and server sides. The client calculates the top bitrate (tb) — a CMCD parameter to indicate the highest bitrate that can be rendered at the client — and sends it to the server together with its device type and screen resolution. The server decides on a suitable bitrate ladder, whose maximum bitrate and resolution are based on CMCD parameters, to the client device with the purpose of providing maximum QoE while minimizing delivered data. CADLAD has two versions to work in Video on
Demand (VoD) and live streaming scenarios. Our CADLAD is client agnostic; hence, it can work with any players and ABR algorithms at the client. The experimental results show that CADLAD is able to increase the QoE by 2.6x while saving 71% of delivered data, compared to an existing bitrate ladder of an available video dataset. We implement our idea within CAdViSE — an open-source testbed for reproducibility.

 

From August 16.-19.2022, a CardioHPC project meeting took place in Skopje, Macedonia. Radu Prodan, Andrei Amza and Sahsko Ristvo participated for AAU.

Vignesh V Menon

ACM Multimedia Conference – Doctoral Symposium Track

Lisbon, Portugal | 10-14 October 2022

Vignesh V Menon (Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt)

Abstract: Rapid growth in multimedia streaming traffic over the Internet motivates the research and further investigation of the video coding performance of such services in terms of speed and Quality of Experience (QoE). HTTP Adaptive Streaming (HAS) is today’s de-facto standard to deliver clients the highest possible video quality. In HAS, the same video content is encoded at multiple bitrates, resolutions, framerates, and coding formats called representations. This study aims to (i) provide fast and compression-efficient multi-bitrate, multi-resolution representations, (ii) provide fast and compression-efficient multi-codec representations, (iii) improve the encoding efficiency of Video on Demand (VoD) streaming using content-adaptive encoding optimizations, and (iv) provide encoding schemes with optimizations per-title for live streaming applications to decrease the storage or delivery costs or/and increase QoE.

The ideal video compression system for HAS envisioned in this doctoral study.

 

Hadi

Between Two and Six? Towards Correct Estimation of JND Step Sizes for VMAF-based Bitrate Laddering

14th International Conference on Quality of Multimedia Experience (QoMEX)
September 5-7, 2022 | Lippstadt, Germany

Hadi Amirpour (Alpen-Adria-Universität Klagenfurt)Raimund Schatz (AIT Austrian Institute of Technology, Austria)and Christian Timmerer (Alpen-Adria-Universität Klagenfurt)

Abstract: We currently witness the rapidly growing importance of intelligent video streaming quality optimization and reduction of video delivery costs. Per-Title encoding, in contrast to a fixed bitrate ladder, shows significant promise to deliver higher quality video streams by addressing the trade-off between compression efficiency and video characteristics such as resolution and frame rate. Selecting encodings with noticeable quality differences in between prevents the construction of an inefficient bitrate ladder that suffers from too similar quality representations. In this respect, the VMAF metric represents a promising foundation for bitrate laddering, as it currently yields the highest video quality prediction performance. However, the minimum noticeable quality difference, referred as to just-noticeable-difference (JND), has not been properly validated for VMAF yet, with existing sources proposing highly diverse ΔVMAF step sizes ranging from two to six.

Hadi

FuRA: Fully Random Access Light Field Image Compression

10th European Workshop on Visual Information Processing (EUVIP)
September 11-14, 2022 | Lisbon, Portugal

Hadi Amirpour (Alpen-Adria-Universität Klagenfurt),  Christine Guillemot (INRIA, France)and Christian Timmerer (Alpen-Adria-Universität Klagenfurt)

Abstract: Light fields are typically represented by multi-view images and enable post-capture actions such as refocusing and perspective shift. To compress a light field image, its view images are typically converted into a pseudo video sequence (PVS) and the generated PVS is compressed using a video codec. However, when using the inter-coding tool of a video codec to exploit the redundancy among view images, the possibility to randomly access any view image is lost. On the other hand, when video codecs independently encode view images using the intra-coding tool, random access to view images is enabled, however, at the expense of a significant drop in the compression efficiency. To address this trade-off, we propose to use neural representations to represent 4D light fields. For each light field, a multi-layer perceptron (MLP) is trained to map the light field four dimensions to the color space, thus enabling random access even to pixels. To achieve higher compression efficiency, neural network compression techniques are deployed. The proposed method outperforms the compression efficiency of HEVC inter-coding, while providing random access to view images and even pixel values.

Fully Random Access Light Field Image Compression