Cluster Computing
DFARM: A deadline-aware fault-tolerant scheduler for cloud computing
Authors: Ahmad Awan, Muhammad Aleem, Altaf Hussain, Radu Prodan
Abstract:
Cloud computing has become popular for small businesses due to its cost-effectiveness and the ability to acquire necessary on-demand services, including software, hardware, network, etc., anytime around the globe. Efficient job scheduling in the Cloud is essential to optimize operational costs in data centers. Therefore, scheduling should consider assigning tasks to Virtual Machines (VMs) in a Cloud environment in such a manner that could speed up execution, maximize resource utilization, and meet users’ SLA and other constraints such as deadlines. For this purpose, the tasks can be prioritized based on their deadlines and task lengths, and the resources could be provisioned and released as needed. Moreover, to cope with unexpected execution situations or hardware failures, a fault-tolerance mechanism could be employed based on hybrid replication and the re-submission method. Most of the existing techniques tend to improve performance. However, their pitfall lies in certain aspects such as either those techniques prioritize tasks based on a singular value (e.g., usually deadline), only utilize a singular fault tolerance mechanism, or try to release resources that cause more overhead immediately. This research work proposes a new scheduler called the Deadline and fault-aware task Adjusting and Resource Managing (DFARM) scheduler, the scheduler dynamically acquires resources and schedules deadline-constrained tasks by considering both their length and deadlines while providing fault tolerance through the hybrid replication-resubmission method. Besides acquiring resources, it also releases resources based on their boot time to lessen costs due to reboots. The performance of the DFARM scheduler is compared to other scheduling algorithms, such as Random Selection, Round Robin, Minimum Completion Time, RALBA, and OG-RADL. With a comparable execution performance, the proposed DFARM scheduler reduces task-rejection rates by $2.34 – 9.53$ times compared to the state-of-the-art schedulers using two benchmark datasets.