We are thrilled to announce the official launch of Fire Totem Games GmbH, a dynamic and innovative game development company based in Austria. After years of dedicated work and passion, we are ready to set the gaming world ablaze with our creative endeavors.

The company founders are Sebastian Uitz, Michael Steinkellner, Manuel Santner, and Noel Treese. We are grateful for the fantastic support from University Klagenfurt, the Game Studies and Engineering master’s program, ITEC, build!, KWF, and EFRE for making this happen.

As Fire Totem Games GmbH, we aim to craft captivating and immersive gaming experiences that ignite players’ imaginations and leave a lasting impact. With a talented team of developers and a burning desire to push the boundaries of gaming, we are excited to embark on this journey and bring our unique vision to life.

Zahra Najafabadi Samani, has been awarded travel grant to attend IPDPS 2023 in St. Petersburg, Florida, USA. Congratulations!


Title: Fast multi-rate encoding for adaptive HTTP streaming

Authors: Hadi Amirpour (Alpen-Adria-Universität Klagenfurt, Austria), Ekrem Çetynkaya (Alpen-Adria-Universität Klagenfurt, Austria), and Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Austria)

Abstract: According to embodiments of the disclosure, information of higher and lower quality encoded video segments is used to limit Rate-Distortion Optimization (RDO) for each Coding Unit Tree (CTU). A method first encodes the highest bit-rate segment and consequently uses it to encode the lowest bit-rate video segment. Block structure and selected reference frame of both highest and lowest bit-rate video segments are used to predict and shorten RDO process for each CTU in middle bit-rates. The method delays just one frame using parallel processing. This approach provides time-complexity reduction compared to the reference software for middle bit-rates while degradation is negligible. Read more

On February 8, 2023, EduDay – organised by the educational lab and students of the HAK 1 Klagenfurt – took place for the first time. Several hundred students were guided through the laboratories and got their first insight into research. CD laboratory ATHENA participated as well and presented background and results from the world of video streaming to the interested participants.

Find more info here.




Where does technology help us in our daily lives?

Interview with Felix Schniz, Game Studies and Engineering SPL @ ITEC


We meet Felix Schniz for an interview in Lakeside Park, in the CD laboratory Athena, building B12B, to learn something about him and his work and why he chose his career. For those who don´t yet know Felix: he is always neatly dressed, has a smile on his lips and is eager for a mutual exchange of ideas and opinions. So, he was quick to accept the invitation to be the first person on a new journey from “People Behind Informatics”. He is passionate about his work and is happy to share his views with us.


Hello Felix, thanks for taking the time to talk to us. Please tell me something about yourself, where you come from, and how your professional career has evolved.

I was born in Bietigheim-Bissingen near Stuttgart. I studied in Mannheim, with the focus of my Bachelor’s degree in English and American Studies. For my Master, I specialized in culture in the process of modernity. In addition to literature and film, we also dealt with digitization processes and that’s how I came to the video game area. That was my “unusual entry” into technical sciences. After my Master’s degree, it was clear to me: I wanted to write a doctoral thesis on video games. The academic path is simply mine, and the topic offers many exciting perspectives, as it is still unexplored in large parts. During my research for the right environment for such a research project, I met René Schallegger at a conference in Oxford. We stay in contact. When a vacancy for a university assistant was advertised at the Department of English in 2016, I applied for this position, started my doctorate at the same time and have been here since then.


Such a coincidence, and very lucky that you found exactly what you were looking for. How was your start at the University of Klagenfurt?

I started immediately and also took on the role of the SPL (programme director) of the Master’s degree in “Game Studies and Engineering“, which combines both – humanities and technical aspects. This is also what is special about this programme: the students learn technical approaches to video games and what kind of a role a technical medium plays in society.


What do you particularly like about your work?

I am taken seriously and can combine my passion for technology and humanities. I am very happy to question: What is the reason for that, what is behind it, and what else needs to be considered? I can live that to the full in my work.


And how did your doctorate continue?

In my doctorate, I asked the research question of what a video game experience actually is. It’s not that easy to name and has to be illuminated from many sides. Philosophically – psychologically – sociologically – media science… The path goes from one’s own, personal to the technical implementation. I wrote theoretical basics, worked with content analyses and scientifically processed my own experiences. This gave me a new, exciting field of questions for myself and research on video games – because how can we speak scientifically about the content of the medium when we experience it in such a personal way?


What consensus emerged for you?

Video games help us to get a bigger, better picture of people in the digital age. We have to ask ourselves what kind of influence video games in the future can and should have and need to raise awareness of what kind of responsibility video game programmers have. Programmers should also ask themselves what they want to offer people. The virtual worlds that open video games can offer us a lot, but we have to learn how to deal with them.

In short, I have to ask myself: What do I want to achieve with technology? What role should it play in my life?

Over the past few years, one has been able to follow what role virtual worlds can play in the lives of people. The well-known video game “Fortnite”, for example, was suddenly not just a popular game, but also a much-needed social meeting point, and a retreat for young people, whose social and private spaces were taken away by the pandemic.

Video games can be of great importance for each of us. They can offer us things we need emotionally, socially, or intellectually, or allow us to explore ourselves. This does not mean that the virtual should replace the real world – but it can be a great addition to it. In order to continue to pursue these thoughts in targeted extracts, I also wrote a lot about coping with grief in addition to my doctoral thesis. I am currently working on a book about the spiritual experience of interactive media in general. It will be published later this year.


Thank you very much for inviting us into your interesting area of work. We wish you a lot of joy and success in your favourite research area.

IEEE/IFIP Network Operations and Management Symposium (NOMS)

8-12 May 2023- Miami, FL – USA

Farzad Tashtarian (Alpen-Adria-Universität Klagenfurt, Austria), Abdelhak Bentaleb (Concordia University, Canada), Hadi Amirpour (Alpen-Adria-Universität Klagenfurt, Austria), Babak Taraghi (Alpen-Adria-Universität Klagenfurt, Austria), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Austria), Hermann Hellwagner (Alpen-Adria-Universität Klagenfurt, Austria), Roger Zimmermann (National University of Singapore, Singapore)

Video content in Live HTTP Adaptive Streaming (HAS) is typically encoded using a pre-defined, fixed set of bitrate-resolution pairs (termed Bitrate Ladder), allowing playback devices to adapt to changing network conditions using an adaptive bitrate (ABR) algorithm. However, using a fixed one-size-fits-all solution when faced with various content complexities, heterogeneous network conditions, viewer device resolutions and locations, does not result in an overall maximal viewer quality of experience (QoE). Here, we consider these factors and design LALISA, an efficient framework for dynamic bitrate ladder optimization in live HAS. LALISA dynamically changes a live video session’s bitrate ladder, allowing improvements in viewer QoE and savings in encoding, storage, and bandwidth costs. LALISA is independent of ABR algorithms and codecs, and is deployed along the path between viewers and the origin server. In particular, it leverages the latest developments in video analytics to collect statistics from video players, content delivery networks and video encoders, to perform bitrate adder tuning. We evaluate the performance of LALISA against existing solutions in various video streaming scenarios using a trace-driven testbed. Evaluation results demonstrate significant improvements in encoding computation (24.4%) and bandwidth (18.2%) costs with an acceptable QoE

From December 9 to December 11, the 6th Klagenfurt Winter Jam took place at the Alpen-Adria Universität Klagenfurt. More than 80 highly motivated game enthusiasts worked for 48 hours on 21 new games and presented their results on Sunday to the public. More jammers joined online to participate remotely. It was an excellent comeback from the time of quarantines and restrictions, and the game jammers appreciated the event to make new contacts, work together, and meet old friends in a chilled and creative environment. Check out our video.

Save the date for the next Game Jams!

2nd Hüttenjam, a special event with limited seats, 13 – 16 April 2023

10th Game Jam will be on the weekend of 2 – 4 June 2023




We are happy to announce that the Call for Papers for our conference Video Game Cultures 2023: Exploring New Horizons is online now.

Please see our website for more info and submission.


ICME`23 July, 2023, Brisbane, Australia


  • Hadi Amirpour, University of Klagenfurt

  • Angeliki Katsenou, Trinity College Dublin, IE and University of Bristol, UK


Video streaming in the context of HTTP Adaptive Streaming (HAS) is replacing legacy media platforms and its market share is growing rapidly due to its simplicity, reliability, and standard support (e.g., MPEG-DASH). It results in an increasing number of video content, where nowadays, video accounts for the vast majority of today’s internet traffic either in the form of user-generated content (UGC) or pristine cinematic content. For HAS, the video is usually encoded in multiple versions (i.e., representations) of different resolutions, bitrates, codecs, etc. and each representation is divided into chunks (i.e., segments) of equal length (e.g., 2-10 second) to enable dynamic, adaptive switching during streaming based on the user’s context conditions (e.g., network conditions, device characteristics, user preferences). Read more

Athors: Alexander Lercher, Nishant Saurabh, Radu Prodan

The 15th IEEE International Conference on Social Computing and Networking

Abstract: Community evolution prediction enables business-driven social networks to detect customer groups modeled as communities based on similar interests by splitting them into temporal segments and utilizing ML classification to predict their structural changes. Unfortunately, existing methods overlook business contexts and focus on analyzing customer activities, raising privacy concerns. This paper proposes a novel method for community evolution prediction that applies a context-aware approach to identify future changes in community structures through three complementary features. Firstly, it models business events as transactions, splits them into explicit contexts, and detects contextualized communities for multiple time windows. Secondly, it %it performs feature engineering by uses novel structural metrics representing temporal features of contextualized communities. Thirdly, it uses extracted features to train ML classifiers and predict the community evolution in the same context and other dependent contexts. Experimental results on two real-world data sets reveal that traditional ML classifiers using the context-aware approach can predict community evolution with up to three times higher accuracy, precision, recall, and F1-score than other baseline classification methods (i.e., majority class, persistence).