Authors: Gregor Molan, Gregor Dolinar, Jovan Bojkovski, Radu Prodan, Andrea Borghesi, Martin Molan
Journal: IEEE Access
Purpose: The gap between software development requirements and the available resources of software developers continues to widen. This requires changes in the development and organization of software development.
Objectives: Presented is a model introducing a quantitative software development management methodology that estimates the relative importance and risk of functionality retention or abundance, which determines the final value of the software product.
Method: The final value of the software product is interpreted as a function of the requirements and functionalities, represented as a computational graph (called a software product graph). The software product graph allows the relative importance of functionalities to be estimated by calculating the corresponding partial derivatives of the value function. The risk of not implementing the functionality is estimated by reducing the final value of a product.
Validation: This model has been applied to two EU projects: CareHD and vINCI. In vINCI, the functionalities with the most significant added value to the application were developed based on the implemented model and those that brought the least value were abandoned. Optimization was not implemented in the CareHD project and proceeded as initially designed. Consequently, only 71% of the CareHD’s potential value has been realized.
Conclusions: Presented model enables rational management and organization of software product development with real-time quantitative evaluation of functionalities impacts, assessment of the risks of omitting them without a significant impact. A quantitative evaluation of the impacts and risks of retention or abundance is possible based on the proposed algorithm, which is the core of the model. This model is a tool for rational organization and development of software products.
Special Issue on Sustainable Multimedia Communications and Services, IEEE COMSOC MMTC Communications – Frontiers
Title: Towards Low-Latency and Energy-Efficient Hybrid P2P-CDN Live Video Streaming
Authors: Reza Farahani, Christian Timmerer, and Hermann Hellwagner
Abstract: Streaming segmented videos over the Hypertext Transfer Protocol (HTTP) is an increasingly popular approach in both live and video-on-demand (VoD) applications. However, designing a scalable and adaptable framework that reduces servers’ energy consumption and supports low latency and high quality services, particularly for live video streaming scenarios, is still challenging for Over-The-Top (OTT) service providers. To address such challenges, this paper introduces a new hybrid P2P-CDN framework that leverages new networking and computing paradigms, i.e., Network Function Virtualization (NFV) and edge computing for live video streaming. The proposed framework introduces a multi-layer architecture and a tree of possible actions therein (an action tree), taking into account all available resources from peers, edge, and CDN servers to efficiently distribute video fetching and transcoding tasks across a hybrid P2P-CDN network, consequently enhancing the users’ latency and video quality. We also discuss our testbed designed to validate the framework and compare it with baseline methods. The experimental results indicate that the proposed framework improves user Quality of Experience (QoE), reduces client serving latency, and improves edge server energy consumption compared to baseline approaches.
Link: ESOCC 2023 (10th European Conference On Service-Oriented And Cloud Computing)
demonstrated by comparing cost savings achieved when data was moved between tiers versus when it remained static. The results indicate that he proposed approach has the potential to significantly reduce cloud storage cost, thereby providing valuable insights for organizations seeking to optimize their cloud storage strategies. Finally, the limitations of the proposed approach are discussed along with the potential directions for future work, particularly the use of game theory to incorporate a feedback loop to extend and improve the proposed approach accordingly.
Title: ARTICONF Decentralized Social Media Platform for Democratic Crowd Journalism
Authors: Ines Rito Lima, Vasco Filipe, Claudia Marinho, Alexandre Ulisses, Antorweep Chakravorty, Atanas Hristov, Nishant Saurabh, Zhiming Zhao, Ruyue Xin, Radu Prodan
Social Network Analysis and Mining https://www.springer.com/journal/13278
Abstract: Media production and consumption behaviors are changing in response to new technologies and demands, giving birth to a new generation of social applications. Among them, crowd journalism represents a novel way of constructing democratic and trustworthy news relying on ordinary citizens arriving at breaking news locations and capturing relevant videos using their smartphones. The ARTICONF project proposes a trustworthy, resilient, and globally sustainable toolset for developing decentralized applications (DApps) to address this need. Its goal is to overcome the privacy, trust, and autonomy-related concerns associated with proprietary social media platforms overflowed by fake news.
Leveraging the ARTICONF tools, we introduce a new DApp for crowd journalism called MOGPlay. MOGPlay collects and manages audio-visual content generated by citizens and provides a secure blockchain platform that rewards all stakeholders involved in professional news production.
Besides live streaming, MOGPlay offers a marketplace for audio-visual content trading among citizens and free journalists with an internal token ecosystem. We discuss the functionality and implementation of the MOGPlay DApp and illustrate four pilot crowd journalism live scenarios that validate the prototype.
Authors: Juanjuan Li, Rui Qin, Cristina Olaverri-Monreal, Radu Prodan, Fei-Yue Wang
Journal: IEEE Transactions on Intelligent Vehicles
Abstract: As part of TIV’s DHW on Vehicle 5.0, this letter introduces a novel concept, Logistics 5.0, to address high complexities in logistics CyberPhysical-Social Systems (CPSS). Building upon the theory of parallel intelligence and leveraging advanced technologies and methods such as blockchain, scenarios engineering, Decentralized Autonomous Organizations and Operations (DAOs), Logistics 5.0 promises to accelerate the paradigm shift towards intelligent and sustainable logistics. First, the parallel logistic framework is proposed, and the logistics ecosystem is discussed. Then, the human-oriented operating systems (HOOS) are suggested to providing intelligent Logistics 5.0 solutions. Logistics 5.0 serves as a critical catalyst in realizing the “6S” objectives, i.e. Safety, Security, Sustainability, Sensitivity, Service, and Smartness, within the logistics industry
- CP-Steering: CDN- and Protocol-Aware Content Steering Solution for HTTP Adaptive Video Streaming
Reza Farahani (University of Klagenfurt, Austria), Abdelhak Bentaleb (Concordia University, Canada), Mohammad Shojafar (University of Surrey, UK), Hermann Hellwagner (University of Klagenfurt, Austria)
https://dl.acm.org/doi/10.1145/3588444.3591044 - Context-Aware HTTP Adaptive Video Streaming Utilizing QUIC’s Stream Priority
Sindhu Chellappa (University of New Hampshire), Reza Farahani (University of Klagenfurt, Austria), Radim Bartos (University of New Hampshire, USA), Hermann Hellwagner (University of Klagenfurt, Austria)
https://dl.acm.org/doi/10.1145/3588444.3591038 - Which CDN to Download From? A Client and Server Strategies
Abdelhak Bentaleb (Concordia University, Canada), Reza Farahani (University of Klagenfurt, Austria), Farzad Tashtarian (University of Klagenfurt, Austria), Hermann Hellwagner (University of Klagenfurt, Austria), Roger Zimmermann (National University of Singapore, Singapore)
https://dl.acm.org/doi/10.1145/3588444.3591030
HiPEAC magazine https://www.hipeac.net/news/#/magazine/
HiPEACINFO 68, pages 27-28.
Autohrs: Dragi Kimovski (Alpen-Adria-Universität Klagenfurt, Austria), Narges Mehran (Alpen-Adria-Universität Klagenfurt, Austria), Radu Prodan (Alpen-Adria-Universität Klagenfurt, Austria), Souvik Sengupta (iExec Blockchain Tech, France), Anthony Simonet-Boulgone (iExec Blockchain Tech, France), Ioannis Plakas (UBITECH, Greece) , Giannis Ledakis (UBITECH, Greece) and Dumitru Roman (University of Oslo and SINTEF AS, Norway)
Abstract: Modern big-data pipeline applications, such as machine learning, encompass complex workflows for real-time data gathering, storage and analysis. Big-data pipelines often have conflicting requirements, such as low communication latency and high computational speed. These require different kinds of computing resource, from cloud to edge, distributed across multiple geographical locations – in other words, the computing continuum. The Horizon 2020 DataCloud project is creating a novel paradigm for big-data pipeline processing over the computing continuum, covering the complete lifecycle of bigdata pipelines. To overcome the runtime challenges associated with automating big-data pipeline processing on the computing continuum, we’ve created the DataCloud architecture. By separating the discovery, definition, and simulation of big-data pipelines from runtime execution, this architecture empowers domain experts with little infrastructure or software knowledge to take an active part in defining big-data pipelines.
This work received funding from the DataCloud European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101016835.
Every year, Carinthia celebrates its cultural and scientific greats by awarding a total of 13 prizes based on the proposal of the Carinthian Cultural Board. This year Hermann Hellwagner received one of the three appreciation prizes in the natural and technical sciences category. Congratulations! Further information: https://www.aau.at/blog/kulturpreise-des-landes-kaernten-fuer-hermann-hellwagner-roswitha-rissner-und-wolfgang-puschnig/