Conference info: NOSSDAV’21: The 31st edition of the Workshop on Network and Operating System Support for Digital Audio and Video Sept. 28-Oct. 1, 2021, Istanbul, Turkey

Conference Website: https://nossdav.org/2021/

Authors: Reza Farahani (Alpen-Adria-Universität Klagenfurt), Farzad Tashtarian (Alpen-Adria-Universität Klagenfurt), Alireza Erfanian (Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Bitmovin), Mohammad Ghanbari (School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK) and Hermann Hellwagner (Alpen-Adria-Universität Klagenfurt)

Abstract: Recently, HTTP Adaptive Streaming (HAS) has become the dominant video delivery technology over the Internet. In HAS, clients have full control over the media streaming and adaptation processes. Lack of coordination among the clients and lack of awareness of the network conditions may lead to sub-optimal user experience, and resource utilization in a pure client-based HAS adaptation scheme. Software-Defined Networking (SDN) has recently been considered to enhance the video streaming process. In this paper, we leverage the capability of SDN and Network Function Virtualization (NFV) to introduce an edge- and SDN-assisted video streaming framework called ES-HAS. We employ virtualized edge components to collect HAS clients’ requests and retrieve networking information in a time-slotted manner. These components then perform an optimization model in a time-slotted manner to efficiently serve clients’ requests by selecting an optimal cache server (with the shortest fetch time). In case of a cache miss, a client’s request is served (i) by an optimal replacement quality (only better quality levels with minimum deviation) from a cache server, or (ii) by the original requested quality level from the origin server. This approach is validated through experiments on a large-scale testbed, and the performance of our framework is compared to pure client-based strategies and the SABR system [11]. Although SABR and ES-HAS show (almost) identical performance in the number of quality switches, ES-HAS outperforms SABR in terms of playback bitrate and the number of stalls by at least 70% and 40%, respectively.

Keywords: Dynamic Adaptive Streaming over HTTP (DASH), Edge Computing, Network-Assisted Video Streaming, Quality of Experience (QoE), Software Defined Networking (SDN), Network Function Virtualization (NFV)

The presentation has been accepted to the main-track of the Austrian-Slovenian HPC Meeting (ASHPC’21). Meeting will be organized in a hybrid format on 31 May – 2 June, 2021 at the Institute of Information Science in Maribor, Slovenia.

Title: Automated Workflows Scheduling via Two-Phase Event-based MILP Heuristic for MRCPSP Problem

Authors: Vladislav Kashansky, Gleb Radchenko, Radu Prodan, Anatoliy Zabrovskiy and Prateek Agrawal

Abstract: In today’s reality massive amounts of data-intensive tasks are managed by utilizing a large number of heterogeneous computing and storage elements interconnected through high-speed communication networks. However, one issue that still requires research effort is to enable effcient workflows scheduling in such complex environments.
As the scale of the system grows and the workloads become more heterogeneous in the inner structure and the arrival patterns, scheduling problem becomes exponentially harder, requiring problem-specifc heuristics. Many techniques evolved to tackle this problem, including, but not limited to Heterogeneous Earliest Finish Time (HEFT), The Dynamic Scaling Consolidation Scheduling (DSCS), Partitioned Balanced Time Scheduling (PBTS), Deadline Constrained Critical Path (DCCP) and Partition Problem-based Dynamic Provisioning Scheduling (PPDPS). In this talk, we will discuss the two-phase heuristic for makespan-optimized assignment of tasks and computing machines on large-scale computing systems, consisting of matching phase with subsequent event-based MILP method for schedule generation. We evaluated the scalability of the heuristic using the Constraint Integer Programing (SCIP) solver with various configurations based on data sets, provided by the MACS framework. Preliminary results show that the model provides near-optimal assignments and schedules for workflows composed of up to 100 tasks with complex task I/O interactions and demonstrates variable sensitivity with respect to the scale of workflows and resource limitation policies imposed.

Keywords: HPC Schedule Generation, MRCPSP Problem, Workflows Scheduling, Two-Phase Heuristic

Acknowledgement: This work has received funding from the EC-funded project H2020 FETHPC ASPIDE (Agreement #801091)

ADAPT started with the online Kickoff meeting, coordinated by Prof. Radu Prodan.

Prof. Radu Prodan

Prof. Radu Prodan has been nominated as Management Committee (MC) Member CA19135 at COST (European Cooperation in Science & Technologie).

Prof. Radu Prodan

Conference: 15th International Conference on Research Challenges in Information Science

Title : DataCloud: Enabling the Big Data Pipelines on the Computing Continuum

Authors: Dumitru Roman, Nikolay Nikolov, Brian Elvesæter, Ahmet Soylu, Radu Prodan, Dragi Kimovski, Andrea Marrella, Francesco Leotta, Dario Benvenuti, Mihhail Matskin, Giannis Ledakis, Anthony Simonet-Boulogne, Fernando Perales, Evgeny Kharlamov, Alexandre Ulisses, Arnor Solberg and Raffaele Ceccarelli

Prof. Radu Prodan

Prof. Radu Prodan is a keynote speaker at Memphis DATA 2021, 25th-26th March 2021.

Talk Abstract: We live in a digital world estimated to host around 4 billion Internet users and 10 billion of mobile connections generating 2.5 billion billion of data every day. Managing and extracting value from this sheer amount of raw data requires deep software analysis tools on massive distributed and parallel computing infrastructures aggregating billions of cores and threads. The talk gives an overview of the research activities at the University of Klagenfurt, Austria, on optimising system software support for extreme-scale data processing applications, with focus on scientific simulations, social media and massively multiplayer online games.

Title: WELFake: Word Embedding over Linguistic Features for Fake News Detection

Authors: Pawan Kumar Verma (Lovely Professional University, India | GLA University, India), Prateek Agrawal (University of Klagenfurt, Austria | Lovely Professional University, India), Ivone Amorin (MOG Technologies | University of Porto, Portugal), Radu Prodan (University of Klagenfurt, Austria)

Abstract: Social media is a popular medium for dissemination of real-time news all over the world. Easy and quick information proliferation is one of the reasons for its popularity. An extensive number of users with different age groups, gender and societal beliefs are engaged in social media websites. Despite these favorable aspects, a significant disadvantage comes in the form of fake news, as people usually read and share information without caring about its genuineness. Therefore, it is imperative to research methods for the authentication of news. To address this issue, this paper proposes a two phase benchmark model named WELFake based on word embedding (WE) over linguistic features for fake news detection using machine learning classification. The first phase pre-processes the dataset and validates the veracity of news content by using linguistic features. The second phase merges the linguistic feature sets with WE and applies voting classification. To validate its approach, this paper also carefully designs a novel WELFake dataset with approximately 72,000 articles, which incorporates different datasets to generate an unbiased classification output. Experimental results show that the WELFake model categorises the news in real and fake with a 96.73% which improves the overall accuracy by 1.31% compared to BERT and 4.25% compared to CNN models. Our frequency-based and focused analyzing writing patterns model outperforms predictive-based related works implemented using the Word2vec WE method by up to 1.73%.

Acknowledgement: ARTICONF project

The full paper has been accepted to the main-track of the International Conference on Computational Science (ICCS’21). Conference will be organized in a virtual format on 16-18 June, 2021.

Title: Monte-Carlo Approach to the Computational Capacities Analysis of the Computing Continuum

Authors: Vladislav Kashansky, Gleb Radchenko, Radu Prodan

Abstract: This article proposes an approach to the problem of computational capacities analysis of the computing continuum via theoretical framework of equilibrium phase-transitions and numerical simulations. We introduce the concept of phase transitions in computing continuum and show how this phenomena can be explored in the context of workflow makespan, which we treat as an order parameter. We simulate the behavior of the computational network in the equilibrium regime within the framework of the XY-model defined over complex agent network with Barabasi-Albert topology. More specifically, we define Hamiltonian over complex network topology and sample the resulting spin-orientation distribution with the Metropolis-Hastings technique. The key aspect of the paper is derivation of the bandwidth matrix, as the emergent effect of the “low-level” collective spin interaction. This allows us to study the first order approximation to the makespan of the “high-level” system-wide workflow model in the presence of data-flow anisotropy and phase transitions of the bandwidth matrix controlled by the means of “noise regime” parameter. For this purpose, we have built a simulation engine in Python 3.6. Simulation results confirm existence of the phase transition, revealing complex transformations in the computational abilities of the agents. Notable feature is that bandwidth distribution undergoes a critical transition from single to multi-mode case. Our simulations generally open new perspectives for reproducible comparative performance analysis of the novel and classic scheduling algorithms.

Keywords: Complex Networks, Computing Continuum, Phase Transitions, Computational Model, MCMC, Metropolis-Hastings, XY-model, Equilibrium Model

Acknowledgement: This work has received funding from the EC-funded project H2020 FETHPC ASPIDE (Agreement #801091)

The paper “Multilayer Resource-aware Partitioning for Fog Application Placement” has been accepted for publication at the 5th IEEE international conference on Fog and Edge computing 2021 (ICFEC 2021) , with an acceptance rate of 17% for regular papers.

Authors: Zahra Najafabadi Samani, Nishant Saurabh, Radu Prodan

Abstract: Fog computing emerged as a crucial platform for the deployment of IoT applications. The complexity of such applications requires methods that handle the resource diversity and network structure of Fog devices, while maximizing the service placement and reducing resource wastage. Prior studies in this domain primarily focused on optimizing application-specific requirements and fail to address the network topology combined with the different types of resources encountered in Fog devices. To overcome these problems, we propose a multilayer resource-aware partitioning method to minimize the resource wastage and maximize the service placement and deadline satisfaction rates in a Fog infrastructure with high multi-user application placement requests. Our method represents the heterogeneous Fog resources as a multilayered network graph and partitions them based on network topology and resource features. Afterward, it identifies the appropriate device partitions for placing an application according to its requirements, which need to overlap in the same network topology partition. Simulation results show that our multilayer resource-aware partitioning method is able to place twice as many services, satisfy deadlines for three times as many application requests, and reduce the resource wastage up to 15-32 times compared to two availability and resource-aware state-of-the-art methods.

Christian Timmerer

Christian Timmerer, Associate Professor at the Institute of Information Technology (ITEC) and Director of the ATHENA Christian Doppler Laboratory, has been appointed IEEE Communications Society Distinguished Lecturer for the term 2021-2022.

“The Distinguished Lecturer Program (DLP) connects Senior IEEE ComSoc members, who are renowned communications technology experts, with ComSoc chapters so they can share their knowledge, expertise, and insights into the future of communications technology.”

In the context of the Distinguished Lecturer Program (DLP), Christian Timmerer will offer the following (virtual) lecture topics:

  • HTTP Adaptive Streaming (HAS) — Quo Vadis?
  • Quality of Experience (QoE) for Traditional and Immersive Media Services
  • Immersive Media Services: from Encoding to Consumption
  • 20 Years of Streaming in 20 Minutes
  • Multimedia Communication, Networking, Protocols, Delivery
  • Multimedia Standards (MPEG, IETF, W3C)

The details of how to request a Distinguished Lecturer can be found here.