Christian Timmerer

IEEE Communication Magazine: From Capturing to Rendering: Volumetric Media Delivery With Six Degrees of Freedom

,

Teaser: “Help me, Obi-Wan Kenobi. You’re my only hope,” said the hologram of Princess Leia in Star Wars: Episode IV – A New Hope (1977). This was the first time in cinematic history that the concept of holographic-type communication was illustrated. Almost five decades later, technological advancements are quickly moving this type of communication from science fiction to reality.

Authors: Jeroen van der Hooft (Ghent University), Maria Torres Vega (Ghent University), Tim Wauters (Ghent University), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Bitmovin), Ali C. Begen (Ozyegin University, Networked Media), Filip De Turck (Ghent University), and Raimund Schatz (AIT Austrian Institute of Technology)

Abstract: Technological improvements are rapidly advancing holographic-type content distribution. Significant research efforts have been made to meet the low-latency and high-bandwidth requirements set forward by interactive applications such as remote surgery and virtual reality. Recent research made six degrees of freedom (6DoF) for immersive media possible, where users may both move their heads and change their position within a scene. In this article, we present the status and challenges of 6DoF applications based on volumetric media, focusing on the key aspects required to deliver such services. Furthermore, we present results from a subjective study to highlight relevant directions for future research.

Link: IEEE Communication Magazine

Paper accepted: Automated Bank Cheque Verification Using Image Processing and Deep Learning Methods

, ,

Authors: Prateek Agrawal (University of Klagenfurt, Austria), Deepak Chaudhary (Lovely Professional University, India), Vishu Madaan (Lovely professional University, India), Anatoliy Zabrovskiy (University of Klagenfurt, Austria), Radu Prodan (University of Klagenfurt, Austria), Dragi Kimovski (University of Klagenfurt, Austria), Christian Timmerer (University of Klagenfurt, Austria)

Abstract: Automated bank cheque verification using image processing is an attempt to complement the present cheque truncation system, as well as to provide an alternate methodology for the processing of bank cheques with minimal human intervention. When it comes to the clearance of the bank cheques and monetary transactions, this should not only be reliable and robust but also save time which is one of the major factor for the countries having large population. Read more

Paper accepted VCIP’20: Fast Multirate Encoding for HTTP Adaptive Streaming Using Machine Learning

,

Authors: Ekrem Çetinkaya (Alpen-Adria-Universität Klagenfurt), Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Bitmovin), and Mohammad Ghanbari (School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK)

Abstract: HTTP Adaptive Streaming (HAS) is the most common approach for delivering video content over the Internet. The requirement to encode the same content at different quality levels (i.e., representations) in HAS is a challenging problem for content providers. Fast multirate encoding approaches try to accelerate this process by reusing information from previously encoded representations. In this paper, we use convolutional neural networks (CNNs) to speed up the encoding of multiple representations with a specific focus on parallel encoding. In parallel encoding, the overall time-complexity is limited to the maximum time-complexity of one of the representations that are encoded in parallel. Therefore, instead of reducing the time-complexity for all representations, the highest time-complexities are reduced. Experimental results show that the proposed method achieves significant time-complexity savings in parallel encoding scenarios (41%) with a slight increase in bitrate and quality degradation compared to the HEVC reference software.

Keywords: Video Coding, Convolutional Neural Networks, HEVC, HTTP Adaptive Streaming (HAS)