Tag Archive for: per-title encoding


Title: Improving Per-title Encoding for HTTP Adaptive Streaming by Utilizing Video Super-resolution

Link: IEEE Visual Communications and Image Processing (VCIP 2021) 5-8 December 2021, Munich, Germany

Authors: Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Hannaneh Barahouei Pasandi (Virginia Commonwealth University), Mohammad Ghanbari (School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK), and Christian Timmerer (Alpen-Adria-Universität Klagenfurt)

Abstract: In per-title encoding, to optimize a bitrate ladder over spatial resolution, each video segment is downscaled to a set of spatial resolutions and they are all encoded at a given set of bitrates. To find the highest quality resolution for each bitrate, the low-resolution encoded videos are upscaled to the original resolution, and a convex hull is formed based on the scaled qualities. Deep learning-based video super-resolution (VSR) approaches show a significant gain over traditional approaches and they are becoming more and more efficient over time.  This paper improves the per-title encoding over the upscaling methods by using deep neural network-based VSR algorithms as they show a significant gain over traditional approaches. Utilizing a VSR algorithm by improving the quality of low-resolution encodings can improve the convex hull. As a result, it will lead to an improved bitrate ladder. To avoid bandwidth wastage at perceptually lossless bitrates a maximum threshold for the quality is set and encodings beyond it are eliminated from the bitrate ladder. Similarly, a minimum threshold is set to avoid low-quality video delivery. The encodings between the maximum and minimum thresholds are selected based on one Just Noticeable Difference. Our experimental results show that the proposed per-title encoding results in a 24% bitrate reduction and 53% storage reduction compared to the state-of-the-art method.

The paper “PSTR: Per-title encoding using Spatio-Temporal Resolutions” has been accepted for publication at the IEEE International Conference on Multimedia and Expo (ICME) 2021 at July 5-9, 2021 Shenzhen, China.

Authors: Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Bitmovin), and Mohammad Ghanbari (School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK)

Abstract: Current per-title encoding schemes encode the same video content (or snippets/subsets thereof) at various bitrates and spatial resolutions to find an optimal bitrate ladder for each video content. Compared to traditional approaches, in which a predefined, content-agnostic (“fit-to-all”) encoding ladder is applied to all video contents, per-title encoding can result in (i) a significant decrease of storage and delivery costs and (ii) an increase in the Quality of Experience. In the current per-title encoding schemes, the bitrate ladder is optimized using only spatial resolutions, while we argue that with the emergence of high framerate videos, this principle can be extended to temporal resolutions as well. In this paper, we improve the per-title encoding for each content using spatio-temporal resolutions. Experimental results show that our proposed approach doubles the performance of bitrate saving by considering both temporal and spatial resolutions compared to considering only spatial resolutions.

Keywords: Bitrate ladder, per-title encoding, framerate, spatial resolution.

IEEE International Conference on Multimedia and Expo (ICME) , 5-9 July 2021, Shenzhen, China