Tag Archive for: itec

ACM Transactions on Multimedia Computing, Communications, and Applications

 

Christian Timmerer (AAU, AT), Hadi Amirpour (AAU, AT), Farzad Tashtarian (AAU, AT), Samira Afzal (AAU, AT), Amr Rizk (Leibniz University Hannover, DE), Michael Zink (University of Massachusetts Amherst, US), and Hermann Hellwagner (AAU, AT)

Abstract: Video streaming has evolved from push-based, broad-/multicasting approaches with dedicated hard-/software infrastructures to pull-based unicast schemes utilizing existing Web-based infrastructure to allow for better scalability. In this article, we provide an overview of the foundational principles of HTTP adaptive streaming (HAS), from video encoding to end user consumption, while focusing on the key advancements in adaptive bitrate algorithms, quality of experience (QoE), and energy efficiency. Furthermore, the article highlights the ongoing challenges of optimizing network infrastructure, minimizing latency, and managing the environmental impact of video streaming. Finally, future directions for HAS, including immersive media streaming and neural network-based video codecs, are discussed, positioning HAS at the forefront of next-generation video delivery technologies.

Keywords: HTTP Adaptive Streaming, HAS, DASH, Video Coding, Video Delivery, Video Consumption, Quality of Experience, QoE

 

https://athena.itec.aau.at/2025/03/acm-tomm-http-adaptive-streaming-a-review-on-current-advances-and-future-challenges/

Neural Representations for Scalable Video Coding

IEEE International Conference on Multimedia & Expo (ICME) 2025

 

Authors: Yiying Wei (AAU, Austria), Hadi Amirpour (AAU, Austria) and Christian Timmerer (AAU, Austria)

 

Abstract: Scalable video coding encodes a video stream into multiple layers so that it can be decoded at different levels of quality/resolution, depending on the device’s capabilities or the available network bandwidth. Recent advances in implicit neural representation (INR)-based video codecs have shown competitive compression performance to both traditional and other learning-based methods. In INR approaches, a neural network is trained to overfit a video sequence, and its parameters are compressed to create a compact representation of the video content. While they achieve promising results, existing INR-based codecs require training separate networks for each resolution/quality of a video, making them challenging for scalable compression. In this paper, we propose Neural representations for Scalable Video Coding (NSVC) that encodes multi-resolution/-quality videos into a single neural network comprising multiple layers. The base layer (BL) of the neural network encodes video streams with the lowest resolution/quality. Enhancement layers (ELs) encode additional information that can be used to reconstruct a higher resolution/quality video during decoding using the BL as a starting point. This multi-layered structure allows the scalable bitstream to be truncated to adapt to the client’s bandwidth conditions or computational decoding requirements. Experimental results show that NSVC outperforms AVC’s Scalable Video Coding (SVC) extension and surpasses HEVC’s scalable extension (SHVC) in terms of VMAF. Additionally, NSVC achieves comparable decoding speeds at high resolutions/qualities.

 

ICME 2025: Neural Representations for Scalable Video Coding | ATHENA Christian Doppler (CD) Laboratory