IEEE Cloud Summit 2022, https://www.ieeecloudsummit.org/

Authors: Radu Prodan, Dragi Kimovski, Andrea Bartolini, Michael Cochez,
Alexandru Iosup, Evgeny Kharlamov, Joze Rozanec, Laurentiu Vasiliu, Ana
Lucia Varbanescu

Abstract: The Graph-Massivizer project, funded by the Horizon Europe research and innovation program, researches and develops a high-performance, scalable, and sustainable platform for information processing and reasoning based on the massive graph (MG) representation of extreme data. It delivers a toolkit of five open-source software tools and FAIR graph datasets covering the sustainable lifecycle of processing extreme data as MGs. The tools focus on holistic usability (from extreme data ingestion and MG creation), automated intelligence (through analytics and reasoning), performance modelling, and environmental sustainability tradeoffs, supported by credible data-driven evidence across the computing continuum. The automated operation based on the emerging serverless computing paradigm supports experienced and novice stakeholders from a broad group of large and small organisations to capitalise on extreme data through MG programming and processing.

Graph-Massivizer validates its innovation on four complementary use cases considering their extreme data properties and coverage of the three sustainability pillars (economy, society, and environment): sustainable green finance, global environment protection foresight, green AI for the sustainable automotive industry, and data centre digital twin for exascale computing. Graph-Massivizer promises 70% more efficient analytics than AliGraph, and 30% improved energy awareness for ETL storage operations than Amazon Redshift. Furthermore, it aims to demonstrate a possible two-fold improvement in data centre energy efficiency and over 25% lower greenhouse gas emissions for basic graph operations.

18th International Conference on Network and Service Management (CNSM 2022)

Thessaloniki, Greece | 31 October – 4 November 2022

Conference Website

Minh Nguyen (Alpen-Adria-Universität Klagenfurt, Austria), Babak Taraghi (Alpen-Adria-Universität Klagenfurt, Austria), Abdelhak Bentaleb (National University of Singapore, Singapore), Roger Zimmermann (National University of Singapore, Singapore), and Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Austria)

Abstract: Considering network conditions, video content, and viewer device type/screen resolution to construct a bitrate ladder is necessary to deliver the best Quality of Experience (QoE).
A large-screen device like a TV needs a high bitrate with high resolution to provide good visual quality, whereas a small one like a phone requires a low bitrate with low resolution. In
addition, encoding high-quality levels at the server side while the network is unable to deliver them causes unnecessary cost for the content provider. Recently, the Common Media Client Data (CMCD) standard has been proposed, which defines the data that is collected at the client and sent to the server with its HTTP requests. This data is useful in log analysis, quality of service/experience monitoring and delivery improvements.

cadlad

 

In this paper, we introduce a CMCD-Aware per-Device bitrate LADder construction (CADLAD) that leverages CMCD to address the above issues. CADLAD comprises components at both client and server sides. The client calculates the top bitrate (tb) — a CMCD parameter to indicate the highest bitrate that can be rendered at the client — and sends it to the server together with its device type and screen resolution. The server decides on a suitable bitrate ladder, whose maximum bitrate and resolution are based on CMCD parameters, to the client device with the purpose of providing maximum QoE while minimizing delivered data. CADLAD has two versions to work in Video on
Demand (VoD) and live streaming scenarios. Our CADLAD is client agnostic; hence, it can work with any players and ABR algorithms at the client. The experimental results show that CADLAD is able to increase the QoE by 2.6x while saving 71% of delivered data, compared to an existing bitrate ladder of an available video dataset. We implement our idea within CAdViSE — an open-source testbed for reproducibility.

 

IEEE Global Communications Conference (GLOBECOM)

December 4-8, 2022 |Rio de Janeiro, Brazil
Conference Website

Authors: Reza Farahani (Alpen-Adria-Universität Klagenfurt, Austria), Abdelhak Bentaleb (National University of Singapore, Singapore), Ekrem Cetinkaya (Alpen-Adria-Universität Klagenfurt, Austria), Christian Timmerer (Alpen-Adria-Universität Klagenfurt, Austria), Roger Zimmermann (National University of Singapore, Singapore), and Hermann Hellwagner (Alpen-Adria-Universität Klagenfurt, Austria)

Abstract: a cost-effective, scalable, and flexible architecture that supports low latency and high-quality live video streaming is still a challenge for Over-The-Top (OTT) service providers. To cope with this issue, this paper leverages Peer-to-Peer (P2P), Content Delivery Network (CDN), edge computing, Network Function Virtualization (NFV), and distributed video transcoding paradigms to introduce a hybRId P2P-CDN arcHiTecture for livE video stReaming (RICHTER). We first introduce RICHTER’s multi-layer architecture and design an action tree that considers all feasible resources provided by peers, edge, and CDN servers for serving peer requests with minimum latency and maximum quality. We then formulate the problem as an optimization model executed at the edge of the network. We present an Online Learning (OL) approach that leverages an unsupervised Self Organizing Map (SOM) to (i) alleviate the time complexity issue of the optimization model and (ii) make it a suitable solution for large-scale scenarios by enabling decisions for groups of requests instead of for single requests. Finally, we implement the RICHTER framework, conduct our experiments on a large-scale cloud-based testbed including 350 HAS players, and compare its effectiveness with baseline systems. The experimental results illustrate that RICHTER outperforms baseline schemes in terms of users’ Quality of Experience (QoE), latency, and network utilization, by at least 59%, 39%, and 70%, respectively.

During the period Aug 1st –26th, 2022, Hamza Baniata, a PhD Candidate at the Department of Computer Science, University of Szeged, Hungary, has visited the institute of Information Technology of the University of Klagenfurt, Austria. Under the collaborative supervision by Prof.
Attila Kertesz (SZTE) and Prof. Radu Prodan (ITEC), Hamza has performed several research activities related to the simulation of Blockchain and Fog Computing applications, the enhancement of the FoBSim simulation tool, and the integration of Machine Learning with Blockchain technology. The visit was encouraged and funded by the European COST program under action identifier CA19135 (CERCIRAS), in which Attila, Radu and Hamza are active members. The scientific results of this research visit are currently being edited and finalized in order to be disseminated in an international scientific conference.

Hadi

Authors: Haichao Yao (Beijing Jiaotong University), Rongrong Ni (Beijing Jiaotong University), Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), Christian Timmerer (Alpen-Adria-Universität Klagenfurt)Yao Zhao (Beijing Jiaotong University).

Results of collaborative work in the ADAPT between Austira (FFG) and China (CAS) accteped at flagship conference of IEEE Intelligent Transportation Systems Society

Title: Hybrid On/Off Blockchain Approach for Vehicle Data Management, Processing and Visualization Exemplified by the ADAPT Platform

Authors: Aso Validi, Vladislav Kashansky, Jihed Khiari, Hamid Hadian, Radu Pordan, Juanjuan Li, Fei-Yue Wang, Cristina Olaverri-Monreal

Abstract: Hybrid on/off-blockchain vehicle data management approaches have received a lot of attention in recent years. However, there are various technical challenges remained to deal with. In this paper we relied on real-world data from Austria to investigate the effects of connectivity on the transport of personal protective equipment. We proposed a three-step mechanism to process, simulate, and store/visualize aggregated vehicle datasets together with a formal pipeline process workflow model. To this end, we implemented a hybrid blockchain platform based on the hyperledger fabric and Gluster file systems. The obtained results demonstrated efficiency and stability for both hyperledger fabric and gluster file system, ability of the both on/off-blockchain mechanisms to meet the platform’s quality of service requirements.

Over two days (June 6-7, 2022) the 11th Video Browser Showdown (VBS) – www.videobrowsershowdown.org, co-organized by Klaus Schöffmann, took place in Phu Quoc, Vietnam. Sixteen teams participated  in about six hours of competition to solve video content search tasks in a large video dataset (V3C1+V3C2), comprising 2300 hours of video content (17235 video files). Eleven teams on site, together with 5 more teams online, accepted the challenge, competed with each other, and showcased their state-of-the-art video search systems to the conference public of MMM 2022 (http://mmm2022.org).  Congratulations to the winning teams of different search categories: vibro (Germany), CVHunter (Czech Republic), VISIONE (Italy).

Prof. Radu Prodan

Radu Prodan talks about “Democratic Trustworthy News in the Social Continuum: the ARTICONF Appeoach” Live streaming at the Digital Day in Messina.

ICME Workshop on Hyper-Realistic Multimedia for Enhanced Quality of Experience (ICMEW)

July 18-22, 2022 | Taipei, Taiwan

Conference Website

Ekrem Çetinkaya (Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt), Hadi Amirpour (Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt), and Christian Timmerer (Christian Doppler LaboratoryATHENA, Alpen-Adria-Universität Klagenfurt)

Abstract: Light field imaging enables post-capture actions such as refocusing and changing view perspective by capturing both spatial and angular information. However, capturing richer information about the 3D scene results in a huge amount of data. To improve the compression efficiency of the existing light field compression methods, we investigate the impact of light field super-resolution approaches (both spatial and angular super-resolution) on the compression efficiency. To this end, firstly, we downscale light field images over (i) spatial resolution, (ii) angular resolution, and (iii) spatial-angular resolution and encode them using Versatile Video Coding (VVC). We then apply a set of light field super-resolution deep neural networks to reconstruct light field images in their full spatial-angular resolution and compare their compression efficiency. Experimental results show that encoding the low angular resolution light field image and applying angular super-resolution yield bitrate savings of 51.16 % and 53.41 % to maintain the same PSNR and SSIM, respectively, compared to encoding the light field image in high-resolution.

 

 

 

 

 

 

Keywords: Light field, Compression, Super-resolution, VVC.

The 13th ACM Multimedia Systems Conference (ACM MMSys 2022) Open Dataset and Software (ODS) track | June 14–17, 2022 |  Athlone, Ireland

Babak Taraghi (Alpen-Adria-Universität Klagenfurt), Hadi Amirpour (Alpen-Adria-Universität Klagenfurt), and Christian Timmerer (Alpen-Adria-Universität Klagenfurt).

Abstract: There exist many applications that produce multimedia traffic over the Internet. Video streaming is on the list, with a rapidly growing desire for more bandwidth to deliver higher resolutions such as Ultra High Definition (UHD) 8K content. HTTP Adaptive Streaming (HAS) technique defines baselines for audio-visual content streaming to balance the delivered media quality and minimize streaming session defects. On the other hand, video codecs development and standardization help the theorem by introducing efficient algorithms and technologies. Versatile Video Coding (VVC) is one of the latest advancements in this area that is still not fully optimized and supported on all platforms. Stated optimization and supporting many platforms require years of research and development. This paper offers a dataset that facilitates the research and development of the aforementioned technologies. Our open-source dataset comprises Dynamic Adaptive Streaming over HTTP (MPEG-DASH) multimedia test assets of encoded Advanced Video Coding (AVC), High Efficiency Video Coding (HEVC), AOMedia Video 1 (AV1), and VVC content with resolutions of up to 7680×4320 or 8K. Our dataset has a maximum media duration of 322 seconds, and we offer our MPEG-DASH packaged content with two segments lengths, 4 and 8 seconds.

The dataset is available here.