Paper Accepted: Efficient Transparent Access to 5G Edge Services

1st International Workshop on Edge Network Softwarization (ENS 2022) co-located with IEEE International Conference on Network Softwarization (NetSoft 2022)  Milan, Italy

Authors: Josef Hammer and Hermann Hellwagner, Alpen-Adria-Universität Klagenfurt

Abstract: Multi-access Edge Computing (MEC) is a central piece of 5G telecommunication systems and is essential to satisfy the challenging low-latency demands of future applications. MEC provides a cloud computing platform at the edge of the radio access network that developers can utilize for their applications. In [1] we argued that edge computing should be transparent to clients and introduced a solution to that end. This paper presents how to efficiently implement such a transparent approach, leveraging Software-Defined Networking. For high performance and scalability, our architecture focuses on three aspects: (i) a modular architecture that can easily be distributed onto multiple switches/controllers, (ii) multiple filter stages to avoid screening traffic not intended for the edge, and (iii) several strategies to keep the number of flows low to make the best use of the precious flow table memory in hardware switches. A performance evaluation is shown, with results from a real edge/fog testbed.

Keywords: 5G, Multi-Access Edge Computing, MEC, Patricia Trie, SDN, Software-Defined Networking