Improve and accelerate how we learn from health data: New approach reduces machine learning time by 60%

Electronic health records, like ELGA in Austria, provide an overview of laboratory results, diagnostics and therapies. Much could be learned from the personal and private data of individuals – with the help of machine learning – for use in the treatment of others. However, the use of the data is a delicate matter, especially when it comes to diseases that carry a stigma. Researchers involved in the EU project “Enabling the Big Data Pipeline Lifecycle on the Computing Continuum (DataCloud)” are working to make new forms of information processing suitable for medical purposes. Dragi Kimovski and his colleagues recently presented their findings in a publication. Read the complete article here.