
PARALLEL
COMPUTING
623.714 Selected Topics in Distributed
Multimedia Systems - November 2018

Ass.-Prof. Jorge Barbosa
Universidade do Porto (FEUP)
https://web.fe.up.pt/~jbarbosa/en/

The objective of this course is to provide an extensive overview
of the fi eld of parallel computing, with emphasis on the use of
OpenMP and MPI to develop parallel programs for multicores,
and an introduction to GPU programming using CUDA and
OpenCL.

At the end of this course, participants should be able to:

• Understand the fundamentals of parallel computing
• Analyze a problem and identify the adequate parallelization

model
• Write message-passing and shared memory programs
• Design parallel solutions for new problems
• Use computational models to estimate applications

performance

Parallel computing enables the use
of computer simulation of complex

systems, also called the third pillar of
science. Many fi elds of knowledge, such
as medicine, weather forecast, automobile
industry, among many others, resort to
computer simulation for new developments.
Additionally, parallel computing is becoming
the current computing paradigm as hardware
tends to multi-processing units. The
common desktop and laptop are today built
with a multicore processor that collectively
has more processing power, than a single
core processor, but cores are individually
less powerful. Accelerators, such as GPUs,
are also becoming a commodity, which
allows the common user to have access to
high–performance machines. Programmers
will have to deal with multiprocessor
architectures in order to use effectively the
machines of today and of the future.
There are several approaches to program
a multicore machine, being the shared
memory model the straight step to
implement a parallel version of a given
sequential code. The well known library
pthreads allows the implementation of this
model but with a level of detail that is not
always desirable. To overcome this burden,
OpenMP emerged as a reliable and effi cient
library to develop shared memory programs
on multicore processors. For GPUs there
are special languages, such as CUDA and
OpenCL, that follow also a shared memory
approach.
The distributed memory model is another
approach to obtain a parallel version of a
sequential code, and is suitable when more
than one processor cooperates to run a
given application. MPI is the most popular
library to implement this model, which is
based on the exchange of messages among
processors.

© 2018 Institute of Information Technology, Alpen-Adria-Universität Klagenfurt - itec.aau.at

LOGIN @ AAU.AT for detailed information and registration!

Timetable for the course:

November 8-10, 2018
November 22-24, 2018

